Animal Models of General Cognitive Ability for Genetic Research into Cognitive Functioning

  • Michael J. GalsworthyEmail author
  • Rosalind Arden
  • Christopher F. Chabris
Part of the Advances in Behavior Genetics book series (AIBG, volume 1)


Species-level research on animal behavior is decades old and very well described, but individual differences in cognition has only gained momentum much more recently. Although there have been some studies of individual differences in cognition in primates, the new research has mainly focused on general cognitive ability (g) in mice. Fortunately, the timing is right for combining our understanding of the genetics and neuroscience of intelligence in humans with genetic manipulation models of learning and memory in mice. This will help forge deeper understanding of human intelligence and mental cognitive disorders such as retardation and Alzheimer Disease. In this chapter, we survey the academic literature associated with g in animals, with discussions of links with genetics, cross-species comparisons and neuroscience. We then focus on mice to describe the rapidly-growing genetic manipulation models of learning, memory and cognitive dysfunction. Ultimately, we believe that cognitive test batteries for mice, in combination with exploring the structure of cognition from the individual differences perspective, creates a useful framework for describing the effects of cognition-related genes and extrapolating these up to the human brain and experience.


Mild Cognitive Impairment Intellectual Disability Fear Conditioning Spatial Navigation General Cognitive Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allman, J., Hakeem, A., & Watson, K. (2002). Two phylogenetic specializations in the human brain. The Neuroscientist, 8, 335–346.PubMedGoogle Scholar
  2. Allman, J. M., Watson, K. K., Tetreault, N. A., & Hakeem, A. Y. (2005). Intuition and autism: A possible role for Von Economo neurons. Trends in Cognitive Sciences, 9, 367–373.PubMedGoogle Scholar
  3. Anastasi, A., Fuller, J. L., Scott, J. P., & Schmitt, J. R. (1955). A factor analysis of the performance of dogs on certain learning tests. Zoologica, 40(3), 33–46.Google Scholar
  4. Anderson, B. (1993). Evidence from the rat for a general factor that underlies cognitive performance and that relates to brain size: Intelligence? Neuroscience Letters, 153, 98–102.PubMedGoogle Scholar
  5. Bagg, H. J. (1920). Individual differences and family resemblances in animal behavior. Archives of Psychology, 43, 1–58.Google Scholar
  6. Balschun, D., Wolfer, D. P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G., Frey, J. U., & Lipp, H. P. (2003). Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? The Journal of Neuroscience, 23, 6304–6314.PubMedGoogle Scholar
  7. Banerjee, K., Chabris, C. F., Johnson, V. E., Lee, J. J., Tsao, F., & Hauser, M. D. (2009). General intelligence in another primate: Individual differences across cognitive task performance in a new world monkey (Saguinus oedipus). (P. F. Ferrari, Ed.) PLoS ONE, 4(6): e5883. doi:10.1371/journal.pone.0005883.Google Scholar
  8. Berger, S., Wolfer, D. P., Selbach, O., Alter, H., Erdmann, G., et al. (2006). Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 195–200.Google Scholar
  9. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., & LaFerla, F. M. (2005). Intraneuronal abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron, 45, 675–688.PubMedGoogle Scholar
  10. Bons, N., Rieger, F., Prudhomme D, Fisher, A., & Krause, K.-H. (2006). Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer’s disease? Genes, Brain Behav, 5, 120–130.Google Scholar
  11. Bontekoe, C. J., Bakker, C. E., Nieuwenhuizen, I. M., van der Linde, H., Lans, H., de Lange, D., Hirst, M. C., & Oostra, B. A. (2001). Instability of a (CGG)98 repeat in the Fmr1 promotor. Human Molecular Genetics, 10, 1693–1699.PubMedGoogle Scholar
  12. Bornstein, M., & Sigman, M. (1986). Continuity in mental development from infancy. Child Development, 57, 251–274.PubMedGoogle Scholar
  13. Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., et al. (1997). A role for the ras signalling pathway in synaptic transmission and long-term memory. Nature, 390, 281–286.PubMedGoogle Scholar
  14. Braunmuhl, A. V. (1956). Kongophile angiopathie und senile plaques bei greisen hunden. Archiv für Psychiatrie und Nervenkrankheiten, 194, 395–414.Google Scholar
  15. Brooks, S. P., Pask, T., Jones, L., & Dunnett, S. B. (2005). Behavioral profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes, Brain and Behavior, 4, 307–17.Google Scholar
  16. Buhot, M.-C., Wolff, M., Benhassine, N., Costet, P., Hen, R., & Segu, L. (2003). Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand. Learning & Memory, 10, 466–477.Google Scholar
  17. Bush, E. C., & Allman, J. M. (2003). The scaling of white matter to grey matter in cerebellum and neocortex. Brain, Behavior, and Evolution, 61, 1–5.Google Scholar
  18. Bush, E. C., & Allman, J. M. (2004). The scaling of frontal cortex in primates and carnivores. Proceedings of the National Academy of Sciences, 101, 3962–3966.Google Scholar
  19. Campbell, A. A. (1935). Community of function in performance of rats on alley mazes and Maier reasoning apparatus. Journal of Comparative and Physiological Psychology, 31, 225–235.Google Scholar
  20. Carlezon, W. A. Jr., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436–445.PubMedGoogle Scholar
  21. Chabris, C. F. (2007). Cognitive and neurobiological mechanisms of the Law of General Intelligence. In M. J. Roberts (Ed.), Integrating the mind. Hove: Psychology Press.Google Scholar
  22. Chandra S. B., Hosler, J. S., & Smith, B. H. (2000). Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). Journal of Comparative Psychology, 114, 86–97.PubMedGoogle Scholar
  23. Commins, W. D., McNemar, Q., & Stone, C. P. (1932). Intercorrelations of measures of ability in the rat. Journal of Comparative Psychology, 1(14), 225–235. doi:10.1037/h0073524Google Scholar
  24. Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., et al. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 372, 237–243.PubMedGoogle Scholar
  25. Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547–552.PubMedGoogle Scholar
  26. Cork, L. C., Powers, R. E., Selkoe, D. J., Davies P., Geyer, J. J., & Price, D. L. (1988). Neurofibrillary tangles and senile plaques in aged bears. Journal of Neuropathology and Experimental Neurology, 47(1988), 629–641.PubMedGoogle Scholar
  27. Costa, R. M., & Silva, A. J. (2003). Mouse models of neurofibromatosis type I: bridging the GAP. Trends in Molecular Medicine, 9, 19–23.PubMedGoogle Scholar
  28. Crabbe, J. C., Wahlsten, D., Dudek, B. C. (1999). Genetics of mouse behavior: interactions with laboratory environment. Science, 284(5420), 1670–1672.PubMedGoogle Scholar
  29. Crawley, J. N. (2008). Behavioral phenotyping strategies for mutant mice. Neuron, 57(6), 809–818.PubMedGoogle Scholar
  30. Crestani, F., Keist, R., Fritschy, J. M., Benke, D., Vogt, K., Prut, L., Bluthmann, H., Mohler, H., & Rudolph, U. (2002). Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proceedings of the National Academy of Sciences of the United States of America, 99, 8980–8985.Google Scholar
  31. Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J., & van der Putten, H. (2003). Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. European Journal of Neuroscience, 17, 2409–2417.PubMedGoogle Scholar
  32. Cui, Z., Lindl, K. A., Mei, B., Zhang, S., & Tsien, J. Z. (2005). Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. European Journal of Neuroscience, 22, 755–763.PubMedGoogle Scholar
  33. D’Adamo, P., Welzl, H., Papadimitriou, S., Raffaele di Barletta, M., Tiveron, C., et al. (2002). Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Human Molecular Genetics, 11, 2567–2580.PubMedGoogle Scholar
  34. Devoy, A., Bunton-Stasyshyn, R. K. A., Tybulewicz V. L. J., Smith, A. J. H., & Fisher, E. M. C. (2012). Genomically humanized mice: technologies and promises. Nature Reviews Genetics, 13, 14–20.Google Scholar
  35. Drago, J., McColl, C. D., Horne, M. K., Finkelstein, D. I., & Ross, S. A. (2003). Neuronal nicotinic receptors: Insights gained from gene knockout and knockin mutant mice. Cellular and Molecular Life Sciences, 60, 1267–1280.PubMedGoogle Scholar
  36. Dunlap, J. W. (1933). The organization of learning and other traits in chickens. Johns Hopkins Press.Google Scholar
  37. Elgersma, Y., Sweatt, J. D., & Giese, K. P. (2004). Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. The Journal of Neurosciences, 24, 8410–8415.Google Scholar
  38. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., Monaco, A. P., Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–72.PubMedGoogle Scholar
  39. Ferguson, H. J., Cobey, S., & Smith, B. H. (2001). Sensitivity to a change in reward is heritable in the honeybee, apis mellifera. Animal Behaviour, 61, 527–534.Google Scholar
  40. Fratiglioni, L., Small, B. J., Winblad, B., & Bäckman, L. (2001). The Transition from Normal Functioning to Dementia in the Aging Population. In K. Iqbal, S. Sisodia, & B. Winblad (Eds.), Alzheimer’s disease: Advances in etiology, pathogenesis and therapeutics (pp. 3-10). Chichester: WileyGoogle Scholar
  41. Galsworthy, M. J., Paya-Cano, J. L., Monleón, S., & Plomin, R. (2002). Evidence for general cognitive ability (g) in heterogeneous stock (HS) mice and an analysis of potential confounds. Genes, Brainand Behavior, 1, 88–95.Google Scholar
  42. Galsworthy, M. J., Paya-Cano, J. L., Liu, L., Monleón, S., Gregoryan, G., Fernandes, C., Schalkwyk, L. C., & Plomin, R. (2005). Assessing reliability, heritability and general cognitive ability in a battery of cognitive tasks for laboratory mice. Behavior Genetics, 35, 675–692.PubMedGoogle Scholar
  43. Galsworthy, M. J., Madani, R., & Lipp, H.-P. (2012). Identifying reliable traits across laboratory mouse exploration arenas: A meta-analysis. Available from Nature Precedings: <>.
  44. Gama Sosa, M. A., De Gasperi, R., Elder, G. A. (2010). Animal transgenesis: an overview. Brain Structure and Function, 214(2–3), 91–109.Google Scholar
  45. Games, D., Adams, D., Alessandrini, R., Barbour, R., Borthelette, P., Blackwell, C., et al. (1995). Alzheimer‐type neuropathology in transgenic mice overexpressing V717F β amyloid precursor protein. Nature, 373, 523–527; doi:10.1038/373523a0Google Scholar
  46. Gerlai, R., McNamara, A., Choi-Lundberg, D. L., Armanini, M., Ross, J., Powell-Braxton, L., & Phillips, H. S. (2001). Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. European Journal of Neuroscience, 14, 1153–63.PubMedGoogle Scholar
  47. Giaccone, G., Verga, L., Finazzi, M., Pollo, B., Tagliavini, F., Frangione, B., & Bugiani, O. (1990). Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neuroscience Letters, 114, 178–183.PubMedGoogle Scholar
  48. Giese, K. P., Friedman, E., Telliez, J. B., Fedorov, N. B., Wines, M., Feig, L. A., & Silva, A. J. (2001). Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology, 41, 791–800.PubMedGoogle Scholar
  49. Gignac, G., Vernon, P. A., & Wickett, J. C. (2003). Factors influencing the relationship between brain size and intelligence. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 93–106). Amsterdam: Pergamon.Google Scholar
  50. Gotz J., & Ittner, L. M. (2008). Animal models of Alzheimer’s disease and frontotemporal dementia. Nature Rev Neurosci, 9, 532–544.Google Scholar
  51. Grant, S. G., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., & Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 258, 1903–10.PubMedGoogle Scholar
  52. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.PubMedGoogle Scholar
  53. Herndon, J. G., Moss, M. B., Rosene, D. L., & Killiany, R. J. (1997). Patterns of cognitive decline in aged rhesus monkeys. Behavioural brain research, 87(1), 25–34.Google Scholar
  54. Herrmann, E., & Call, J. (2012). Are there geniuses among the apes? Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2753–2761.Google Scholar
  55. Hölscher, C., Schmid, S., Pilz, P. K. D., Sansig, G., van der Putten, H., & Plappert, C. F. (2004). Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behavioural Brain Research, 154, 473–481.PubMedGoogle Scholar
  56. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F. S., & Cole, G. (1996). Correlative memory deficits, a-beta elevation, and amyloid plaques in transgenic mice. Science, 274, 99–102.PubMedGoogle Scholar
  57. Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835–881.PubMedGoogle Scholar
  58. Jin, P., & Warren, S. T. (2003). New insights into fragile X syndrome: from molecules to neurobehaviors. Trends in Biochemical Sciences, 28, 152–158.PubMedGoogle Scholar
  59. Katsnelson, E., Motro, U., Feldman, M. W., & Lotem, A. (2011). Individual-learning ability predicts social-foraging strategy in house sparrows. Proceedings of the Royal Society B, 278, 582–589.Google Scholar
  60. Kaufman, S.B., DeYoung, C.G., Gray, J.R., Jimenez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116, 321–340Google Scholar
  61. Keagy, J., Savard, J. F., & Borgia, G. (2009). Male satin bowerbird problem-solving ability predicts mating success. Animal Behaviour, 78, 809–817.Google Scholar
  62. Keagy, J., Savard, J.-F., & Borgia, G. (2011). Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Animal Behaviour, 81(5), 1063–1070. doi:10.1016/j.anbehav.2011.02.018Google Scholar
  63. Kobayashi, K., & Kobayashi, T. (2001). Genetic evidence for noradrenergic control of long-term memory consolidation. Brain and Development, 23, S16–S23.Google Scholar
  64. Kolata, S., Light, K., Townsend, D. A., Hale, G., Grossman, H., Matzel, L. D. (2005). Variations in working memory capacity predict individual differences in general learning abilities among genetically diverse mice. Neurobio Learn Mem, 84, 242–246.Google Scholar
  65. Kolata, S., Light, K., Wass, C. D., Colas-Zelin, D., Roy, D., Matzel, L. D. (2010). A dopaminergic gene cluster in the prefrontal cortex predicts performance indicative of general intelligence in genetically heterogeneous mice. PLoS One, 5, e14036.PubMedGoogle Scholar
  66. Kooy, R. F. (2003). Of mice and the fragile X syndrome. Trends in Genetics, 19, 148–154.PubMedGoogle Scholar
  67. Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389–433.Google Scholar
  68. Law, J. W. S., Lee, A. Y. W., Sun, M., Nikonenko, A. G., Chung, S. K., Dityatev, A., Schachner, M., & Morellini, F. (2003). Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. The Journal of Neuroscience, 23, 10419–10432.PubMedGoogle Scholar
  69. Lee, V. M., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.PubMedGoogle Scholar
  70. Lehrer, J. (2009). Small, furry … and smart. Nature, 461, 862–864.PubMedGoogle Scholar
  71. Li, G., Cheng, H., Zhang, X., Shang, X., Xie, H., Zhang, X., Yu, J., & Han, J. (2012). Hippocampal neuron loss is correlated with cognitive deficits in SAMP8 mice. Neurological Sciences, 1–7 [Epub ahead of print] PubMed PMID: 22872064.Google Scholar
  72. Liggett, J. R. (1925). A note of the reliability of the chick’s performance in two simple mazes. The Pedagogical Seminary and Journal of Genetic Psychology, 32(3), 470–480.Google Scholar
  73. Linnarsson, S., Bjorklund, A., & Ernfors, P. (1997). Learning deficit in BDNF mutant mice. European Journal of Neuroscience, 9, 2581–7.PubMedGoogle Scholar
  74. Livesey, P. J. (1970). A consideration of the neural basis of intelligent behavior: Comparative studies. Behavioral Science, 15, 164–170.PubMedGoogle Scholar
  75. Locurto, C., & Scanlon, C., (1998). Individual differences and a spatial learning factor in two strains of mice (Mus musculus). Journal of Comparative Psychology, 112(4), 344–352.Google Scholar
  76. Locurto, C., Fortin, E., & Sullivan, R. (2003). The structure of individual differences in Heterogeneous Stock mice across problem types and motivational systems. Genes, Brainand Behavior, 2, 40–55.Google Scholar
  77. Locurto, C., Benoit, A., Crowley, C., & Miele, A. (2006). The structure of individual differences in batteries of rapid acquisition tasks in mice. Journal of Comparative Psychology, 120, 378–388.Google Scholar
  78. Lu, Y.-M., Jia, Z., Janus, C., Henderson, J. T., Gerlai, R., Wojtowicz, J. M., & Roder, J. C. (1997). Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. The Journal of Neuroscience, 17, 5196–5205.PubMedGoogle Scholar
  79. Masugi, M., Yokoi, M., Shigemoto, R., Muguruma, K., Watanabe, Y., Sansig, G., van der Putten, H., & Nakanishi, S. (1999). Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. The Journal of Neuroscience, 19, 955–963.PubMedGoogle Scholar
  80. Matsui, M., Yamada, S., Oki, T., Manabe, T., Taketo, M. M., & Ehlert, F. J. (2004). Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sciences, 75, 2971–2981.PubMedGoogle Scholar
  81. Matzel, L. D., & Gandhi, C. C. (2000). The tractable contribution of synapses and their component molecules to individual differences in learning. Behavioural Brain Research, 110, 53–66.PubMedGoogle Scholar
  82. Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., Specht, S. M., et al. (2003). Individual differences in the expression of a general learning ability in mice. Journal of Neuroscience, 23(16), 6423–6433.PubMedGoogle Scholar
  83. Matzel, L. D., Light, K. R., Wass, C., Colas-Zelin, D., Denman-Brice, A., Waddel, A. C., & Kolata, S. (2011). Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility. Learning & Memory, 18(5), 345–356.Google Scholar
  84. Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., et al. (2002). Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron, 34, 807–820.PubMedGoogle Scholar
  85. McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337–346.Google Scholar
  86. Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., et al. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24, 401–14.PubMedGoogle Scholar
  87. Miyamoto, Y., Yamada, K., Noda, Y., Mori, H., Mishina, M., & Nabeshima, T. (2001). Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor 1 subunit. The Journal of Neuroscience, 21, 750–757.PubMedGoogle Scholar
  88. Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., et al. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. Journal of Biological Chemistry, 274, 6483–6492.PubMedGoogle Scholar
  89. Morley, K. I., & Montgomery, G. W. (2001). The genetics of cognitive processes: candidate genes in humans and animals. Behavior Genetics, 31, 511–531.PubMedGoogle Scholar
  90. Morrison, J. H., & Hof, P. R. (1997). Life and death of neurons in the aging brain. Science, 278, 412–419.PubMedGoogle Scholar
  91. Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., et al. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. The Journal of Neuroscience, 20, 4050–4058.PubMedGoogle Scholar
  92. Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E. et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485, 242–245.PubMedGoogle Scholar
  93. Nelson P.T., Greenberg, S. G., & Saper, C. B. (1994). Neurofibrillary tangles in the cerebral cortex of sheep. Neuroscience Letters, 170, 187–190.PubMedGoogle Scholar
  94. Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P., & LaFerla, F. M. (2003a). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging, 24, 1063–1070.Google Scholar
  95. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., et al. (2003b). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular abeta and synaptic dysfunction. Neuron, 39, 409–421.Google Scholar
  96. Oitzl, M. S., Reichardt, H. M., Joels, M., & de Kloet, E. R. (2000). Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 98, 12790–12795.Google Scholar
  97. Pallas, M., Camins, A., Smith, M. A., Perry, G., Lee, H. G., & Casadesus, G. (2008). From aging to alzheimer’s disease: Unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis, 15, 615–624.PubMedGoogle Scholar
  98. Pittenger, C., Huang, Y. Y., Paletzki, R. F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., & Kandel, E. R. (2002). Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampusdependent spatial memory. Neuron, 34, 447–462.PubMedGoogle Scholar
  99. Plomin, R., & Galsworthy, M. J. (2003). Intelligence and cognition. In Cooper DN (ed.), Nature encyclopedia of the human genome (Vol. 3, pp. 508–514). London: Nature Publishing Group.Google Scholar
  100. Plomin, R., & Kosslyn, S. M. (2001). Genes, brain and cognition. Nature Neuroscience, 4, 1153–1154.PubMedGoogle Scholar
  101. Plomin, R., DeFries JC, McClearn, G. E., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.Google Scholar
  102. Poirier, R., Jacquot, S., Vaillend, C., Soutthiphong, A. A., Libbey, M., Davis, S., et al. (2007). Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behavior Genetics, 37(1), 31–50.PubMedGoogle Scholar
  103. Powell, C. M. (2006). Gene targeting of presynaptic proteins in synaptic plasticity and memory: Across the great divide. Neurobiology of Learning and Memory, 85, 2–15.PubMedGoogle Scholar
  104. Price, J. L., Davies, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295–312.PubMedGoogle Scholar
  105. Rajalakshmi, R., & Jeeves, M. A. (1968). Performance on Hebb-Williams maze as related to discrimination and reversal learning in rats. Animal Behaviour, 16(1)Google Scholar
  106. Robbins, T. W., & Murphy, E. R. (2006). Behavioral pharmacology: 40 + years of progress, with a focus on glutamate receptors and cognition. Trends in Pharmacological Sciences, 27, 141–148.PubMedGoogle Scholar
  107. Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., & Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 3, 238–244.PubMedGoogle Scholar
  108. Reisel, D., Bannerman, D. M., Schmitt, W. B., Deacon, R. M. J., Flint, J., Borchardt, T., Seeburg, P. H., & Rawlins, N. P. (2002). Spatial memory dissociations in mice lacking GluR1. Nature Neuroscience, 5, 868–873.PubMedGoogle Scholar
  109. Richter S. H., Garner, J. P., & Würbel, H. (2009). Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nature Methods, 6, 257–261.PubMedGoogle Scholar
  110. Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140, 1–47.PubMedGoogle Scholar
  111. Rosenthal, N., & Brown, S. (2007). The mouse ascending: perspectives for human-disease models. Nature Cell Biology, 9, 993-999. doi:10.1038/ncb437Google Scholar
  112. Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250–257.PubMedGoogle Scholar
  113. Sakagawa, T., Okuyama, S., Kawashima, N., Hozumi, S., Nakagawasai, O., Tadano, T., Kisara, K., Ichiki, T., & Inagami, T. (2000). Pain threshold, learning and ormation of brain edema in mice lacking the angiotensin II type 2 receptor. Life Sciences, 67, 2577–2585.PubMedGoogle Scholar
  114. Savitz, J., Solms, M., & Ramesar, R. (2006). The molecular genetics of cognition: dopamine, COMT and BDNF. Genes, Brain and Behavior, 5, 311–328.Google Scholar
  115. Schmitt, W. B., Deacon, R. M. J., Seeburg, P. H., Rawlins, J. N. P., & Bannerman, D. M. (2003). A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-a-deficient mice. The Journal of Neuroscience, 23, 3953–3959.PubMedGoogle Scholar
  116. Schoenemann, P. T., Sheehan, M. J., & Glotzer, D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8, 242–252.PubMedGoogle Scholar
  117. Schultz, C., Ghebremedhin, E., Sassin I, Braak, E., & Braak, H. (1999). Abnormally phosphorylated tau protein in neurons and glial cells of aged baboons. In K. Iqbal, D. F. Schwaabm, B. Winblad, & H. M. Wisniewski (Eds.) Alzheimer’s disease and related disorders (pp. 179–185). West Sussex: Wiley.Google Scholar
  118. Selcher, J. C., Nekrasova, T., Paylor, R., Landreth, G. E., & Sweatt, J. D. (2001). Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learning & Memory, 8, 11–19.Google Scholar
  119. Shahbazian, M. D., Young, J. I., Yuva-Paylor, L. A., Spencer, C. M., Antalffy, B. A., Noebels, J. L., Armstrong, D. L., Paylor, R., & Zoghbi, H. Y. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.PubMedGoogle Scholar
  120. Silva, A. J., Paylor, R., Wehner, J. M., & Tonegawa, S. (1992). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 257, 206–11.PubMedGoogle Scholar
  121. Spearman, C. (1904). “General intelligence,” objectively determined and measured. The American Journal of Psychology, 15(2), 201–292Google Scholar
  122. Spires-Jones T., & Knafo, S. (2012). Spines, plasticity, and cognition in Alzheimer’s model mice. Neural Plast. 2012:319836. Epub 2011 Nov 28.Google Scholar
  123. Stork, O., & Welzl, H. (1999). Memory formation and the regulation of gene expression. Cellular and Molecular Life Sciences, 55, 575–592.PubMedGoogle Scholar
  124. Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., & Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.PubMedGoogle Scholar
  125. Tang, Y. P., Wang, H., Feng, R., Kyin, M., & Tsien, J. Z. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 41, 779–790.PubMedGoogle Scholar
  126. Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience, 5, 173–83.PubMedGoogle Scholar
  127. Thompson, R. M., Crinella, F. M., & Yu, J. (1990). Brain mechanisms in problem solving and intelligence: A lesion survey of the rat brain. New York: Plenum.Google Scholar
  128. Thorndike, R. L. (1935). Organization of behavior in the albino rat. Genetic Psychology Monographs, 17, 1–70.Google Scholar
  129. Tomlin, M. I., & Stone, C. P. (1934). Intercorrelations of measures of learning ability in the albino rat. Journal of Comparative and Physiological Psychology, 17, 73–88.Google Scholar
  130. Tong, X. K., & Hamel, E. (1999). Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer’s disease. Neuroscience, 92, 163–175.PubMedGoogle Scholar
  131. Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327–1338.PubMedGoogle Scholar
  132. Veltman J. A., & Brunner, H. G. (2012). De novo mutations in human genetic disease. Nature Reviews Genetics, 13, 565–575.PubMedGoogle Scholar
  133. Warren, J. M. (1961). Individual differences in discrimination learning by cats. The Journal of Genetic Psychology, 1(98), 89–93.Google Scholar
  134. Welzl, H., D’Adamo, P., Wolfer, D. P., & Lipp, H. P. (2006). Mouse models of hereditary mental retardation. In G. S. Fisch & J. Flint (Eds.), R. Lydic & H. A. Baghdoyan (Series Eds.), Transgenic and knockout models of neuropsychiatric disorders (Contemporary clinical neuroscience) (pp. 101–125). Totowa: Humana Press.Google Scholar
  135. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., Delon, M. R. (1982). Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science, 215, 1237–1239.PubMedGoogle Scholar
  136. Witelson, S. F., Beresh, H., & Kigar, D. L. (2005). Intelligence and brain size in 100 postmortem brains: Sex, lateralization and age factors. Brain, 129, 386–398.PubMedGoogle Scholar
  137. Woodruff-Pak, D. S. (2008). Animal Models of Alzheimer’s Disease: Therapeutic Implications. Journal of Alzheimer’s Disease, 15, 507–521Google Scholar
  138. Zamanillo, D., Sprengel, R., Hvalby, Ø., Jensen, V., Burnashev, N., Rozov, A., et al. (1999). Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science, 284, 1805–1811.PubMedGoogle Scholar
  139. Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor perspectives in biology, 4(3).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Michael J. Galsworthy
    • 1
    Email author
  • Rosalind Arden
    • 2
  • Christopher F. Chabris
    • 3
  1. 1.Department of Applied Health ResearchUniversity College LondonLondonUK
  2. 2.Institute of PsychiatryKing’s College LondonLondonUK
  3. 3.Department of PsychologyUnion CollegeSchenectadyUSA

Personalised recommendations