Gene by Environment Interplay in Cognitive Aging

  • Chandra A. ReynoldsEmail author
  • Deborah Finkel
  • Catalina Zavala
Part of the Advances in Behavior Genetics book series (AIBG, volume 1)


In this chapter, we reconsider existing theoretical models of Gene–Environment (GE) interplay and view them through the lens of a lifespan perspective, focusing on the shifting nature of the environments that impact cognitive function throughout adulthood. Existing evidence for GE interplay in cognitive aging is evaluated from this vantage point, including investigations that tap recent advances in genotyping and gene expression. The extent to which genetic factors are actually correlated with environments that provide more or less support for cognitive skills is unknown. However, educational and occupational attainment as well as leisure activities and exercise may reflect GE correlational processes that deserve further examination from a life course perspective. Emerging evidence is perhaps a bit more encouraging with respect to G × E processes: e.g., higher education and participation in leisure and physical activities may lower the risk of cognitive decline in those who already carry the APOE e4 risk allele. Familiality of methylation levels and telomere lengths, suggests that genetically driven differential sensitivities to environments (e.g., stress) may be important to individual differences in cognitive aging, but detailed investigations of specific environmental factors is minimal as yet. Large-scale efforts to study G × E influences on aging outcomes are underway, and predicted to contribute in important ways to the emerging literature on GE interplay using behavioral genetics and molecular methods.


Telomere Length Cognitive Aging General Cognitive Ability Early Adversity Methylation Methylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge that a portion of this work was supported by the National Institutes of Aging (R01 AG037985).


  1. Adler, N. E., Boyce, T., Chesney, M. A., Cohen, S., Folkman, S., Kahn, R. L., & Syme, S. L. (1994). Socioeconomic status and health: The challenge of the gradient. American Psychologist, 49(1), 15–24. doi:10.1037/0003-066x.49.1.15.PubMedCrossRefGoogle Scholar
  2. Andel, R., Crowe, M., Pedersen, N. L., Mortimer, J., Crimmins, E., Johansson, B., & Gatz, M. (2005). Complexity of work and risk of Alzheimer’s disease: a population-based study of Swedish twins. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Twin Study). The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60(5). P251–258.CrossRefGoogle Scholar
  3. Andel, R., Vigen, C., Mack, W. J., Clark, L. J., & Gatz, M. (2006). The effect of education and occupational complexity on rate of cognitive decline in Alzheimer’s patients. (Research Support, N.I.H., Extramural). Journal of the International Neuropsychological Society, 12(1), 147–152. doi:10.1017/S1355617706060206.PubMedCrossRefGoogle Scholar
  4. Andel, R., Kareholt, I., Parker, M. G., Thorslund, M., & Gatz, M. (2007). Complexity of primary lifetime occupation and cognition in advanced old age. (Research Support, Non-U.S. Gov’t). Journal of Aging and Health, 19(3), 397–415. doi:10.1177/0898264307300171.PubMedCrossRefGoogle Scholar
  5. Ariza, M., Pueyo, R., Matarin Mdel, M., Junque, C., Mataro, M., Clemente, I., et al. (2006). Influence of APOE polymorphism on cognitive and behavioural outcome in moderate and severe traumatic brain injury. (Research Support, Non-U.S. Gov’t). Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 1191–1193. doi:10.1136/jnnp.2005.085167.PubMedCrossRefGoogle Scholar
  6. Alzheimer’s Association (2012). Alzheimer’s disease facts and figures. Alzheimers and Dementia: The Journal of the Alzheimers Association, 8, 131–168.Google Scholar
  7. Aubert, G., & Lansdorp, P. M. (2008). Telomeres and aging. Physiological Reviews, 88(2), 557–579. doi:10.1152/physrev.00026.2007.PubMedCrossRefGoogle Scholar
  8. Bakaysa, S. L., Mucci, L. A., Slagboom, P. E., Boomsma, D. I., McClearn, G. E., Johansson, B., & Pedersen, N. L. (2007). Telomere length predicts survival independent of genetic influences. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study). Aging Cell, 6(6), 769–774. doi:10.1111/j.1474-9726.2007.00340.x.PubMedCrossRefGoogle Scholar
  9. Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life span theory in developmental psychology. In R. M. Lerner & W. Damon (Eds.), Handbook of Child Psychology: Vol. 1, Theoretical Models of Human Development (6th ed, pp. 569–664). Hoboken: Wiley.Google Scholar
  10. Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52(5), 619–626. doi:10.1111/j.1469-7610.2010.02327.x.PubMedCrossRefGoogle Scholar
  11. Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’tReview). Molecular Psychiatry, 14(8), 746–754. doi:10.1038/mp.2009.44.PubMedCrossRefGoogle Scholar
  12. Bennett, D. A., Schneider, J. A., Tang, Y., Arnold, S. E., & Wilson, R. S. (2006). The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. (Research Support, N.I.H., Extramural). Lancet Neurology, 5(5), 406–412. doi:10.1016/S1474-4422(06)70417–3.PubMedCrossRefGoogle Scholar
  13. Biegler, K. A., Anderson, A. K., Wenzel, L. B., Osann, K., & Nelson, E. L. (2012). Longitudinal change in telomere length and the chronic stress response in a randomized pilot biobehavioral clinical study: Implications for cancer prevention. (Research Support, N.I.H., Extramural). Cancer Prevention Research, 5(10), 1173–1182. doi:10.1158/1940-6207.CAPR-12-0008.PubMedCrossRefGoogle Scholar
  14. Bieman-Copland, S., Ryan, E. B., & Cassano, J. (1998). Responding to challenges of late life. In D. M. Stack & D. R. White (Eds.), Improving competence across the lifespan: Building interventions based on theory and research (pp. 141–157). New York: Plenum.Google Scholar
  15. Bischoff, C., Graakjaer, J., Petersen, H. C., Hjelmborg, J. V. B., Vaupel, J. W., Bohr, V., et al. (2005). The heritability of telomere length among the elderly and oldest-old. Twin Research and Human Genetics, 8(5), 433–439. doi:10.1375/183242705774310141.PubMedCrossRefGoogle Scholar
  16. Boardman, J. D., Barnes, L. L., Wilson, R. S., Evans, D. A., & de Leon, C. F. M. (2012). Social disorder, apoe-e4 genotype, and change in cognitive function among older adults living in Chicago. Social Science & Medicine, 74(10), 1584–1590. doi:
  17. Bocklandt, S., Lin, W., Sehl, M. E., Sanchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. (Twin Study). PLoS ONE, 6(6), e14821. doi:10.1371/journal.pone.0014821.CrossRefGoogle Scholar
  18. Boks, M. P., Derks, E. M., Weisenberger, D. J., Strengman, E., Janson, E., Sommer, I. E., Ophoff, R. A., et al. (2009). The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study). PLoS ONE, 4(8), e6767. doi:10.1371/journal.pone.0006767.CrossRefGoogle Scholar
  19. Boyce, W. T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In A. Masten (Ed.), Multilevel dynamics in developmental psychopathology: Pathways to the future (34th ed., pp. 45–82). Minneapolis: University of Minnesota.Google Scholar
  20. Buetnner, D. (2008). The Blue Zones: Lessons for living longer from the people who’ve lived the longest. Washington, DC: National Geographic Press.Google Scholar
  21. Caplan, L. J., & Schooler, C. (2006). Household work complexity, intellectual functioning, and self-esteem in men and women. Journal of Marriage and Family, 68, 883–900.Google Scholar
  22. Carrero, J. J., Stenvinkel, P., Fellstrom, B., Qureshi, A. R., Lamb, K., Heimburger, O., et al. (2008).Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. (Research Support, Non-U.S. Gov’t). Journal of Internal Medicine, 263(3), 302–312. doi:10.1111/j.1365-2796.2007.01890.x.PubMedCrossRefGoogle Scholar
  23. Chadwick, M. J., Hassabis, D., Weiskopf, N., & Maguire, E. A. (2010). Decoding individual episodic memory traces in the human hippocampus. (Research Support, Non-U.S. Gov’t). Current Biology, 20(6), 544–547. doi:10.1016/j.cub.2010.01.053.PubMedCrossRefGoogle Scholar
  24. Chen, Y., Durakoglugil, M. S., Xian, X., & Herz, J. (2010). ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. (In Vitro Research Support, Non-U.S. Gov’t). Proceedings of the National Academy of Sciences of the United States of America, 107(26), 12011–12016. doi:10.1073/pnas.0914984107.PubMedCrossRefGoogle Scholar
  25. Chen, C.-H., Gutierrez, E. D., Thompson, W., Panizzon, M. S., Jernigan, T. L., Eyler, L. T., et al. (2012). Hierarchical genetic organization of human cortical surface area. Science, 335(6076), 1634–1636. doi:10.1126/science.1215330.PubMedCrossRefGoogle Scholar
  26. Cherkas, L. F., Aviv, A., Valdes, A. M., Hunkin, J. L., Gardner, J. P., Surdulescu, G. L., et al. (2006). The effects of social status on biological aging as measured by white-blood-cell telomere length. (Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). Aging Cell, 5(5), 361–365. doi:10.1111/j.1474-9726.2006.00222.x.PubMedCrossRefGoogle Scholar
  27. Chouliaras, L., Rutten, B. P., Kenis, G., Peerbooms, O., Visser, P. J., Verhey, F., et al. (2010a). Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Progress in Neurobiology, 90(4), 498–510. doi:S0301-0082(10)00013-4 [pii] 10.1016/j.pneurobio. 2010. 01.002.CrossRefGoogle Scholar
  28. Chouliaras, L., van den Hove, D. L., Kenis, G., Dela Cruz, J., Lemmens, M. A., van Os, J., et al. (2010b). Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain, Behavior, and Immunity, 25(4), 616–623. doi:S0889-1591(10)00571-4 [pii] 10.1016/j.bbi.2010.11.016.CrossRefGoogle Scholar
  29. Christensen, H. (2001). What cognitive changes can be expected with normal ageing? (Research Support, Non-U.S. Gov’t Review). The Australian and New Zealand Journal of Psychiatry, 35(6), 768–775.PubMedCrossRefGoogle Scholar
  30. Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wiemels, J. L., et al. (2009). Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). PLoS Genetics, 5(8), e1000602. doi:10.1371/journal.pgen.1000602.CrossRefGoogle Scholar
  31. Cole, S. W. (2009). Social regulation of human gene expression. Current Directions in Psychological Science, 18(3), 132–137. doi:10.1111/j.1467-8721.2009.01623.x.PubMedCrossRefGoogle Scholar
  32. Coolen, M. W., Statham, A. L., Qu, W., Campbell, M. J., Henders, A. K., Montgomery, G. W., et al. (2011). Impact of the genome on the epigenome is manifested in DNA methylation patterns of imprinted regions in monozygotic and dizygotic twins. (Research Support, Non-U.S. Gov’t Twin Study). PLoS ONE, 6(10), e25590. doi:10.1371/journal.pone.0025590.CrossRefGoogle Scholar
  33. Dardiotis, E., Grigoriadis, S., & Hadjigeorgiou, G. M. (2012). Genetic factors influencing outcome from neurotrauma. (Review). Current Opinion in Psychiatry, 25(3), 231–238. doi:10.1097/YCO.0b013e3283523c0e.PubMedCrossRefGoogle Scholar
  34. Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. (Meta-Analysis Research Support, Non-U.S. Gov’t). Molecular Psychiatry, 16(10), 996–1005. doi:10.1038/mp.2011.85.PubMedCrossRefGoogle Scholar
  35. Day, J. J., & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13(11), 1319–1323. doi:10.1038/nn.2666.PubMedCrossRefGoogle Scholar
  36. Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70(5), 813–829. doi:S0896-6273(11)00433-8 [pii] 10.1016/j.neuron.2011.05.019.PubMedCrossRefGoogle Scholar
  37. Day, J. J., & Sweatt, J. D. (2012). Epigenetic treatments for cognitive impairments. Neuropsychopharmacology, 37(1), 247–260. doi:10.1038/npp.2011.85 npp201185 [pii].PubMedCrossRefGoogle Scholar
  38. Deary, I. J., Yang, J., Davies, G., Harris, S. E., Tenesa, A., Liewald, D., Visscher, P. M., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. (Research Support, Non-U.S. Gov’t). Nature, 482(7384), 212–215. doi:10.1038/nature10781.PubMedGoogle Scholar
  39. Dick, D. M. (2011). Gene-environment interaction in psychological traits and disorders. (Research Support, N.I.H., Extramural Review). Annual Review of Clinical Psychology, 7, 383–409. doi:10.1146/annurev-clinpsy-032210-104518.PubMedCrossRefGoogle Scholar
  40. Dziedzic, T. (2006). Systemic inflammatory markers and risk of dementia. American Journal of Alzheimers Disease and Other Dementias, 21(4), 258–262.PubMedCrossRefGoogle Scholar
  41. Epel, E. S. (2009). Psychological and metabolic stress: A recipe for accelerated cellular aging? (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review). Hormones, 8(1), 7–22.PubMedGoogle Scholar
  42. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.). Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17312–17315. doi:10.1073/pnas.0407162101.Google Scholar
  43. Erickson, K. I., Miller, D. L., Weinstein, A. M., Akl, S. L., & Banducci, S. (2012). Physical activity and brain plasticity in late adulthood: A conceptual and comprehensive review (Vol. 3).Google Scholar
  44. Etnier, J. L., Caselli, R. J., Reiman, E. M., Alexander, G. E., Sibley, B. A., Tessier, D., & McLemore, E. C. (2007). Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). Medicine and Science in Sports and Exercise, 39(1), 199–207. doi:10.1249/01.mss.0000239399.85955.5e.PubMedCrossRefGoogle Scholar
  45. Evans, G. W. (2004). The environment of childhood poverty. (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review). The American Psychologist, 59(2), 77–92. doi:10.1037/0003-066X.59.2.77.PubMedCrossRefGoogle Scholar
  46. Falconer, D. S. (1989). Introduction to Quantitative Genetics. (3rd ed.). London: Longman, Scientific & Technical.Google Scholar
  47. Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. (10.1038/nrg3142). Nature Reviews Genetics, 13(2), 97–109.PubMedGoogle Scholar
  48. Fernandez, A. F., Assenov, Y., Martin-Subero, J. I., Balint, B., Siebert, R., Taniguchi, H., & Esteller, M. (2012). A DNA methylation fingerprint of 1628 human samples. (Research Support, Non-U.S. Gov’t). Genome Research, 22(2), 407–419. doi:10.1101/gr.119867.110.PubMedCrossRefGoogle Scholar
  49. Ferrari, C., Xu, W.-L., Wang, H.-X., Winblad, B., Sorbi, S., Qiu, C., & Fratiglioni, L. (2012). How can elderly apolipoprotein E Œµ4 carriers remain free from dementia? Neurobiology of Aging, 34(1), 13–21. doi:10.1016/j.neurobiolaging.2012.03.003.PubMedCrossRefGoogle Scholar
  50. Finkel, D., & Reynolds, C. A. (2009). Behavioral genetic investigations of cognitive aging. In Y.-K. Kim (Ed.), Handbook of Behavior Genetics (pp. 101–112). New York: Springer.CrossRefGoogle Scholar
  51. Finkel, D., Reynolds, C. A., Berg, S., & Pedersen, N. L. (2006). Surprising lack of sex differences in normal cognitive aging in twins. International Journal of Aging and Human Development, 62(4), 335–357.PubMedCrossRefGoogle Scholar
  52. Finkel, D., Andel, R., Gatz, M., & Pedersen, N. L. (2009). The role of occupational complexity in trajectories of cognitive aging before and after retirement. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study). Psychology and Aging, 24(3), 563–573. doi:10.1037/a0015511.PubMedCrossRefGoogle Scholar
  53. Fisher, R. A. (1925). The resemblance between twins, a statistical examination of Lauterbach’s Measurements. Genetics, 10(6), 569–579.PubMedGoogle Scholar
  54. Fotenos, A. F., Mintun, M. A., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2008). Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). Archives of Neurology, 65(1), 113–120. doi:10.1001/archneurol.2007.27.PubMedCrossRefGoogle Scholar
  55. Fozard, J. L., Reitsema, J., Bouma, H., & Graafmans, J. A. M. (2000). Gerontechnology: Creating enabling environments for the challenges and opportunities of aging. Educational Gerontology, 26, 331–344.CrossRefGoogle Scholar
  56. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences, 102(30), 10604–10609.CrossRefGoogle Scholar
  57. Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. (Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t). Neuron, 66(2), 198–204. doi:10.1016/j.neuron.2010.03.035.PubMedCrossRefGoogle Scholar
  58. Gatz, M. (2007). Genetics, dementia, and the elderly. Current Directions in Psychological Science, 16, 123–127.CrossRefGoogle Scholar
  59. Gatz, M., Mortimer, J. A., Fratiglioni, L., Johansson, B., Berg, S., Andel, R., et al. (2007). Accounting for the relationship between low education and dementia: A twin study. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study). Physiology & Behavior, 92(1–2), 232–237. doi:10.1016/j.physbeh.2007.05.042.CrossRefGoogle Scholar
  60. Giedd, J., Stockman, M., Weddle, C., Liverpool, M., Alexander-Bloch, A., Wallace, G., et al. (2010). Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychology Review, 20(4), 349–361. doi:10.1007/s11065-010-9151-9.PubMedCrossRefGoogle Scholar
  61. Gilley, D., Herbert, B. S., Huda, N., Tanaka, H., & Reed, T. (2008). Factors impacting human telomere homeostasis and age-related disease. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review). Mechanisms of Ageing and Development, 129(1–2), 27–34. doi:10.1016/j.mad.2007.10.010.PubMedCrossRefGoogle Scholar
  62. Gimeno, D., Marmot, M. G., & Singh-Manoux, A. (2008). Inflammatory markers and cognitive function in middle-aged adults: The Whitehall II study. Psychoneuroendocrinology, 33(10), 1322–1334.PubMedCrossRefGoogle Scholar
  63. Glymour, M. M., Tzourio, C., & Dufouil, C. (2012). Is cognitive aging predicted by one’s own or one’s parents’ educational level? Results from the three-city study. American Journal of Epidemiology, 175(8), 750–759. doi:10.1093/aje/kwr509.PubMedCrossRefGoogle Scholar
  64. Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27, 4–13.CrossRefGoogle Scholar
  65. Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10(1), 1–11. doi: DESC556 [pii] 10.1111/j.1467–7687.2007.00556.xGoogle Scholar
  66. Gow, A. J., Johnson, W., Pattie, A., Brett, C. E., Roberts, B., Starr, J. M., & Deary, I. J. (2011). Stability and change in intelligence from age 11 to ages 70, 79, and 87: The Lothian Birth Cohorts of 1921 and 1936. (Research Support, Non-U.S. Gov’t). Psychology and Aging, 26(1), 232–240. doi:10.1037/a0021072.PubMedCrossRefGoogle Scholar
  67. Graff, J., & Mansuy, I. M. (2009). Epigenetic dysregulation in cognitive disorders. European Journal of Neuroscience, 30(1), 1–8. doi:EJN6787 [pii] 10.1111/j.1460-9568.2009.06787.x.PubMedCrossRefGoogle Scholar
  68. Grant, M. D., Kremen, W. S., Jacobson, K. C., Franz, C., Xian, H., Eisen, S. A., et al. (2010). Does parental education have a moderating effect on the genetic and environmental influences of general cognitive ability in early adulthood? (Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Twin Study). Behavior Genetics, 40(4), 438–446. doi:10.1007/s10519-010-9351-3.PubMedCrossRefGoogle Scholar
  69. Greenough, W. T., McDonald, J. W., Parnisari, R. M., & Camel, J. E. (1986). Environmental conditions modulate degeneration and new dendrite growth in cerebellum of senescent rats. Brain research, 380(1), 136–143.PubMedCrossRefGoogle Scholar
  70. Hanscombe, K. B., Trzaskowski, M., Haworth, C. M., Davis, O. S., Dale, P. S., & Plomin, R. (2012). Socioeconomic status (SES) and children’s intelligence (IQ): In a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study). PLoS ONE, 7(2), e30320. doi:10.1371/journal.pone.0030320.CrossRefGoogle Scholar
  71. Harati, H., Barbelivien, A., Herbeaux, K., Muller, M. A., Engeln, M., Kelche, C., et al. (2012). Lifelong environmental enrichment in rats: impact on emotional behavior, spatial memory vividness, and cholinergic neurons over the lifespan. Age. doi:10.1007/s11357-012-9424-8.Google Scholar
  72. Harbeby, E., Jouin, M., Alessandri, J. M., Lallemand, M. S., Linard, A., Lavialle, M., et al. (2012).n-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared to the CA1 area of the hippocampus: Effect of rest and neuronal activation in the rat. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 86(6), 211–220. doi:10.1016/j.plefa.2012.04.008.PubMedCrossRefGoogle Scholar
  73. Harden, K. P., Turkheimer, E., & Loehlin, J. C. (2007).Genotype by environment interaction in adolescents’ cognitive aptitude. Behavior Genetics, 37(2), 273–283. doi:10.1007/s10519-006-9113-4.PubMedCrossRefGoogle Scholar
  74. Head, D., Bugg, J. M., Goate, A. M., Fagan, A. M., Mintun, M. A., Benzinger, T., et al. (2012). Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Archives of neurology, 69(5), 636–643. doi:10.1001/archneurol.2011.845.Google Scholar
  75. Holtzman, D. M., & Fagan, A. M. (1998). Potential role of apoE in structural plasticity in the nervous system; implications for disorders of the central nervous system. Trends in cardiovascular medicine, 8(6), 250–255.PubMedCrossRefGoogle Scholar
  76. Hoth, K. F., Haley, A. P., Gunstad, J., Paul, R. H., Poppas, A., Jefferson, A. L., et al. (2008). Elevated C-reactive protein is related to cognitive decline in older adults with cardiovascular disease. Journal of the American Geriatrics Society, 56(10), 1898–1903.PubMedCrossRefGoogle Scholar
  77. Houben, J. M., Moonen, H. J., van Schooten, F. J., & Hageman, G. J. (2008).Telomere length assessment: Biomarker of chronic oxidative stress? (Review). Free Radical Biology & Medicine, 44(3), 235–246. doi:10.1016/j.freeradbiomed.2007.10.001.CrossRefGoogle Scholar
  78. Huda, N., Tanaka, H., Herbert, B. S., Reed, T., & Gilley, D. (2007).Shared environmental factors associated with telomere length maintenance in elderly male twins. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Twin Study). Aging Cell, 6(5), 709–713. doi:10.1111/j.1474-9726.2007.00330.x.PubMedCrossRefGoogle Scholar
  79. Jinks, J. L., & Fulker, D. W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of human behavior. Psychological bulletin, 73(5), 311–349.PubMedCrossRefGoogle Scholar
  80. Johansson, B., Hofer, S. M., Allaire, J. C., Maldonado-Molina, M. M., Piccinin, A. M., Berg, S., et al. (2004).Change in cognitive capabilities in the oldest old: The effects of proximity to death in genetically related individuals over a 6-year period. (Research Support, U.S. Gov’t, P.H.S. Twin Study). Psychology and Aging, 19(1), 145–156. doi:10.1037/0882-7974.19.1.145.PubMedCrossRefGoogle Scholar
  81. Johnson, W., Deary, I. J., McGue, M., & Christensen, K. (2009). Genetic and environmental transactions linking cognitive ability, physical fitness, and education in late life. Psychology and Aging, 24, 48–62.PubMedCrossRefGoogle Scholar
  82. Jordanova, V., Stewart, R., Davies, E., Sherwood, R., & Prince, M. (2007). Markers of inflammation and cognitive decline in an African-Caribbean population. International Journal of Geriatric Psychiatry, 22(10), 966–973.PubMedCrossRefGoogle Scholar
  83. Kaliman, P., Parrizas, M., Lalanza, J. F., Camins, A., Escorihuela, R. M., & Pallas, M. (2011). Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Research Reviews, 10(4), 475–486. doi:S1568-1637(11)00046-8 [pii] 10.1016/j.arr.2011.05.002.PubMedCrossRefGoogle Scholar
  84. Kang, J. H., Logroscino, G., De Vivo, I., Hunter, D., & Grodstein, F. (2005).Apolipoprotein E, cardiovascular disease and cognitive function in aging women. Neurobiology of Aging, 26(4), 475–484. doi:10.1016/j.neurobiolaging.2004.05.003.PubMedCrossRefGoogle Scholar
  85. Krabbe, K. S., Mortensen, E. L., Avlund, K., Pilegaard, H., Christiansen, L., Pedersen, A. N., et al. (2009). Genetic priming of a proinflammatory profile predicts low IQ in octogenarians. Neurobiology of Aging, 30(5), 769–781.PubMedCrossRefGoogle Scholar
  86. Kremen, W. S., Jacobson, K. C., Xian, H., Eisen, S. A., Waterman, B., Toomey, R., et al. (2005).Heritability of word recognition in middle-aged men varies as a function of parental education. (Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Twin Study). Behavior Genetics, 35(4), 417–433. doi:10.1007/s10519-004-3876-2.PubMedCrossRefGoogle Scholar
  87. Lawton, M. P., & Nahemow, L. (1973). Ecology of the aging process. In C. Eisdorfer & M. P. Lawton (Eds.), The psychology of adult development and aging (pp. 619–674). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  88. Lee, B. K., Glass, T. A., James, B. D., Bandeen-Roche, K., & Schwartz, B. S. (2011). Neighborhood psychosocial environment, Apolipoprotein E genotype, and cognitive function in older adults. Archives of General Psychiatry, 68(3), 7.CrossRefGoogle Scholar
  89. Lee, S., Doulames, V., Donnelly, M., Levasseaur, J., & Shea, T. B. (2012). Environmental enrichment can prevent cognitive decline induced by dietary oxidative challenge. (Research Support, Non-U.S. Gov’t). Journal of Alzheimers Disease, 28(3), 497–501. doi:10.3233/JAD-2011-111562.PubMedGoogle Scholar
  90. Li Voti, P., Conte, A., Suppa, A., Iezzi, E., Bologna, M., Aniello, M. S., et al. (2011).Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. (Comparative Study). Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 212(1), 91–99. doi:10.1007/s00221-011-2700-5.PubMedCrossRefGoogle Scholar
  91. Liang, J., & Fairchild, T. J. (1979). Relative deprivation and perception of financial adequacy among the aged. Journal of Gerontology, 34(5), 768–759.CrossRefGoogle Scholar
  92. Lichtenstein, P., Harris, J. R., Pedersen, N. L., & McClearn, G. E. (1992). Socioeconomic status and physical health, how are they related? An empirical study based on twins reared apart and twins reared together. Social Science & Medicine, 36(4), 441–450.CrossRefGoogle Scholar
  93. Lof-Ohlin, Z. M., Hagnelius, N. O., & Nilsson, T. K. (2008).Relative telomere length in patients with late-onset Alzheimer’s dementia or vascular dementia. Neuroreport, 19(12), 1199–1202. doi:10.1097/WNR.0b013e3283089220 00001756-200808060-00006 [pii].PubMedCrossRefGoogle Scholar
  94. Lovden, M., Ghisletta, P., & Lindenberger, U. (2005).Social participation attenuates decline in perceptual speed in old and very old age. Psychology and Aging, 20(3), 423–434. doi:10.1037/0882-7974.20.3.423.PubMedCrossRefGoogle Scholar
  95. Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008).Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. The Journal of Neuroscience, 28(42), 10576–10586. doi:28/42/10576 [pii] 10.1523/JNEUROSCI.1786-08.2008.PubMedCrossRefGoogle Scholar
  96. Lukens, J. N., Van Deerlin, V., Clark, C. M., Xie, S. X., & Johnson, F. B. (2009). Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer’s disease. Alzheimers Dement, 5(6), 463–469. doi:S1552-5260(09)02014-7 [pii] 10.1016/j.jalz.2009.05.666.PubMedCrossRefGoogle Scholar
  97. Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009).Effects of stress throughout the lifespan on the brain, behaviour and cognition. (Review). Nature reviews. Neuroscience, 10(6), 434–445. doi:10.1038/nrn2639.PubMedGoogle Scholar
  98. Maekawa, M., & Watanabe, Y. (2007). Epigenetics: Relations to disease and laboratory findings. Current Medicinal Chemistry, 14(25), 2642–2653.PubMedCrossRefGoogle Scholar
  99. Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: Beyond the synapse. Neuron Glia Biology, 1(4), 351–363. doi:10.1017/s1740925×05000219.PubMedCrossRefGoogle Scholar
  100. Martin, N. G., Rowell, D. M., & Whitfield, J. B. (1983). Do the MN and Jk systems influence environmental variability in serum lipid levels? (Comparative Study). Clinical Genetics, 24(1), 1–14.PubMedCrossRefGoogle Scholar
  101. Martin-Ruiz, C., Dickinson, H. O., Keys, B., Rowan, E., Kenny, R. A., & Von Zglinicki, T. (2006).Telomere length predicts poststroke mortality, dementia, and cognitive decline. Annals of Neurology, 60(2), 174–180. doi:10.1002/ana.20869.PubMedCrossRefGoogle Scholar
  102. Mather, K. A., Jorm, A. F., Parslow, R. A., & Christensen, H. (2010).Is telomere length a biomarker of aging? A review. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66(2), 202–213. doi:glq180 [pii] 10.1093/gerona/glq180.Google Scholar
  103. Matthews, K. A., & Gallo, L. C. (2011). Psychological perspectives on pathways linking socioeconomic status and physical health. (Research Support, N.I.H., Extramural Review). Annual Review of Psychology, 62, 501–530. doi:10.1146/annurev.psych.031809.130711.PubMedCrossRefGoogle Scholar
  104. McArdle, J. J., & Prescott, C. A. (2010).Contemporary modeling of Gene-by-Environment effects in randomized multivariate longitudinal studies. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 5(5), 606–621. doi:10.1177/1745691610383510.CrossRefGoogle Scholar
  105. McGue, M., & Christensen, K. (2002).The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28(4), 435–451. doi:10.1080/03610730290080416.PubMedCrossRefGoogle Scholar
  106. Medland, S. E., Neale, M. C., Eaves, L. J., & Neale, B. M. (2009).A note on the parameterization of Purcell’s G x E model for ordinal and binary data. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). Behavior Genetics, 39(2), 220–229. doi:10.1007/s10519-008-9247-7.PubMedCrossRefGoogle Scholar
  107. Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., et al. (2010).Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13(6), 664–666. doi:nn.2560 [pii] 10.1038/nn.2560.PubMedCrossRefGoogle Scholar
  108. Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., et al. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. PNAS Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14716–14721.Google Scholar
  109. Miller, D. I., Taler, V., Davidson, P. S., & Messier, C. (2012). Measuring the impact of exercise on cognitive aging: Methodological issues. (Research Support, Non-U.S. Gov’t Review). Neurobiology of Aging, 33(3), 622, e629–643. doi:10.1016/j.neurobiolaging.2011.02.020.CrossRefGoogle Scholar
  110. Mohammed, A. H., Henriksson, B. G., Söderström, S., Ebendal, T., Olsson, T., & Seckl, J. R. (1993). Environmental influences on the central nervous system and their implications for the aging rat. Behavioural Brain Research, 57(2), 183–191.PubMedCrossRefGoogle Scholar
  111. Mooijaart, S. P., Sattar, N., Trompet, S., Polisecki, E., de Craen, A. J. M., Schaefer, E. J., et al. (2011). C-reactive protein and genetic variants and cognitive decline in old age: The PROSPER Study. PLoS One, 6(9), e23890.CrossRefGoogle Scholar
  112. Morse, C. K. (1993). Does variability increase with age? An archival study of cognitive measures. Psychology and Aging, 8(2), 156–164.PubMedCrossRefGoogle Scholar
  113. Myers, A. J., & Nemeroff, C. B. (2012).APOE: A risk factor for multiple disorders. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 20(7), 545–548. doi:10.1097/JGP.0b013e318259b9a5.CrossRefGoogle Scholar
  114. Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 9(1), 65–75.PubMedCrossRefGoogle Scholar
  115. Nichol, K., Deeny, S. P., Seif, J., Camaclang, K., & Cotman, C. W. (2009). Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. (Research Support, N.I.H., Extramural). Alzheimers & Dementia: The Journal of the Alzheimers Association, 5(4), 287–294. doi:10.1016/j.jalz.2009.02.006.CrossRefGoogle Scholar
  116. Obisesan, T. O., Umar, N., Paluvoi, N., & Gillum, R. F. (2012). Association of leisure-time physical activity with cognition by apolipoprotein-E genotype in persons aged 60 years and over: The National Health and Nutrition Examination Survey (NHANES-III). (Comparative Study Research Support, N.I.H., Extramural). Clinical Interventions in Aging, 7, 35–43. doi:10.2147/CIA.S26794.PubMedCrossRefGoogle Scholar
  117. Pechtel, P., & Pizzagalli, D. A. (2011).Effects of early life stress on cognitive and affective function: an integrated review of human literature. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review). Psychopharmacology, 214(1), 55–70. doi:10.1007/s00213-010-2009-2.PubMedCrossRefGoogle Scholar
  118. Pedersen, N. L., Plomin, R., Nesselroade, J. R., & McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life span. Psychological Science, 3(6), 346–353.CrossRefGoogle Scholar
  119. Pedersen, N. L., Reynolds, C. A., & Gatz, M. (1996). Sources of covariation among Mini-Mental State Examination scores, education, and cognitive abilities. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 51(2), P55–63.CrossRefGoogle Scholar
  120. Pedersen, N. L., Christensen, K., Dahl, A., Finkel, D., Franz, C. E., Gatz, M., Horwitz, B. N., Johansson, B., Johnson, W., Kremen, W. S., Lyons, M. J., Malmberg, B., McGue, M., Neiderhiser, J. M., Petersen, I., & Reynolds, C. A. (2013). IGEMS: The consortium on interplay of genes and environment across multiple studies. Twin Research and Human Genetics, 16, 481–489.Google Scholar
  121. Petit-Turcotte, C., Aumont, N., Beffert, U., Dea, D., Herz, J., & Poirier, J. (2005).The APOE receptor apoER2 is involved in the maintenance of efficient synaptic plasticity. (Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.). Neurobiology of Aging, 26(2), 195–206. doi:10.1016/j.neurobiolaging.2004.04.007.PubMedCrossRefGoogle Scholar
  122. Pfefferbaum, A., Sullivan, E. V., & Carmelli, D. (2004). Morphological changes in aging brain structures are differentially affected by time-linked environmental influences despite strong genetic stability. Neurobiology of Aging, 25(2), 175–183.PubMedCrossRefGoogle Scholar
  123. Pinaud, R., Tremere, L. A., Penner, M. R., Hess, F. F., Robertson, H. A., & Currie, R. W. (2002). Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. Neuroscience, 112(3), 573–582.PubMedCrossRefGoogle Scholar
  124. Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral Genetics (5th ed.). New York: Worth.Google Scholar
  125. Purcell, S. (2002).Variance components models for gene-environment interaction in twin analysis. (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Twin Study). Twin research: The Official Journal of the International Society for Twin Studies, 5(6), 554–571. doi:10.1375/136905202762342026.Google Scholar
  126. Rafnsson, S. B., Deary, I. J., Smith, F. B., Whiteman, M. C., Rumley, A., Lowe, G. D. O., & Fowkes, F. G. R. (2007). Cognitive decline and markers of inflammation and hemostasis: The Edinburgh Artery Study. Journal of the American Geriatrics Society, 55(5), 700–707.PubMedCrossRefGoogle Scholar
  127. Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology, 30, 311–326.Google Scholar
  128. Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., & Tsien, J. Z. (2000).Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.). Nature Neuroscience, 3(3), 238–244. doi:10.1038/72945.PubMedCrossRefGoogle Scholar
  129. Reiss, D., & Leve, L. D. (2007).Genetic expression outside the skin: Clues to mechanisms of Genotype x Environment interaction. (Research Support, N.I.H., extramural review). Development and Psychopathology, 19(4), 1005–1027. doi:10.1017/S0954579407000508.PubMedCrossRefGoogle Scholar
  130. Reynolds, C. A. (2008a). Genetic and environmental influences on cognitive change. In S. M. Hofer & D. F. Alwin (Eds.), The Handbook on Cognitive Aging: Interdisciplinary Perspectives. Thousand Oaks: Sage.Google Scholar
  131. Reynolds, C. A. (2008b). Genetics of brain aging—twin aging. In L. Squire (Ed.), Encyclopedia of Neuroscience (Network Version ed., pp. 10500): Elsevier.Google Scholar
  132. Reynolds, C. A., Finkel, D., McArdle, J. J., Gatz, M., Berg, S., & Pedersen, N. L. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology, 41(1), 3–16.PubMedCrossRefGoogle Scholar
  133. Reynolds, C. A., Gatz, M., Berg, S., & Pedersen, N. L. (2007). Genotype-environment interactions: Cognitive aging and social factors. Twin Research and Human Genetics, 10(2), 241–254. doi:10.1375/twin.10.2.241.PubMedCrossRefGoogle Scholar
  134. Reynolds, C. A., Gatz, M., Prince, J. A., Berg, S., & Pedersen, N. L. (2010). Serum lipid levels and cognitive change in late life. Journal of the American Geriatrics Society, 58(3), 501–509. doi:JGS2739 [pii] 10.1111/j.1532-5415.2010.02739.x.PubMedCrossRefGoogle Scholar
  135. Rimol, L. M., Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Fischl, B., Franz, C. E., et al. (2010).Cortical thickness is influenced by regionally specific genetic factors. (Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Twin Study). Biological Psychiatry, 67(5), 493–499. doi:10.1016/j.biopsych.2009.09.032.PubMedCrossRefGoogle Scholar
  136. Roberts, R. O., Geda, Y. E., Knopman, D. S., Cha, R. H., Pankratz, V. S., Boeve, B. F., Petersen, R. C., et al. (2012).The incidence of MCI differs by subtype and is higher in men: The Mayo Clinic Study of Aging. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t). Neurology, 78(5), 342–351. doi:10.1212/WNL.0b013e3182452862.PubMedCrossRefGoogle Scholar
  137. Rodin, J. (1986). Aging and health: Effects of sense of control. Science, 233, 1271–1276.PubMedCrossRefGoogle Scholar
  138. Rodin, J. (1989). Sense of control: Potentials for intervention. Annals of the American Academy of Political and Social Science, 503, 29–42.PubMedCrossRefGoogle Scholar
  139. Rowe, J. W., & Kahn, R. L. (1997). Successful aging. (Research Support, Non-U.S. Gov’t Review). The Gerontologist, 37(4), 433–440.PubMedCrossRefGoogle Scholar
  140. Rutter, M. (2012).Gene–environment interdependence. European Journal of Developmental Psychology, 9(4), 391–412. doi:10.1080/17405629.2012.661174.CrossRefGoogle Scholar
  141. Salthouse, T. A. (2006). Mental exercise and mental aging: Evaluating the validity of the “use it or lose it” hypothesis. Perspectives on Psychological Science, 1, 68–87.CrossRefGoogle Scholar
  142. Sapolsky, R. M. (2004). Social status and health in humans and other animals. Annual Review of Anthropology, 33, 393–418.CrossRefGoogle Scholar
  143. Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308, 648–652.PubMedCrossRefGoogle Scholar
  144. Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25, 625–633.PubMedCrossRefGoogle Scholar
  145. Scarpa, S., Cavallaro, R. A., D’Anselmi, F., & Fuso, A. (2006). Gene silencing through methylation: An epigenetic intervention on Alzheimer disease. Journal of Alzheimers Disease, 9, 407–414.PubMedGoogle Scholar
  146. Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype greater than environment effects. (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.). Child Development, 54(2), 424–435.PubMedGoogle Scholar
  147. Schooler, C., & Caplan, L. J. (2008). Those who have, get: Social structure, environmental complexity, intellectual functioning, and self-directed orientations in the elderly. In K. W. Schaie & R. P. Abeles (Eds.), Social Structures and Aging Individuals: Continuing Challenges (Vol. 20, pp. 131-153).New York: Springer.Google Scholar
  148. Schram, M. T., Euser, S. M., de Craen, A. J., Witteman, J. C., Frölich, M., Hofman, A., Westendorp, R. G. J. (2007). Systemic markers of inflammation and cognitive decline in old age. Journal of the American Geriatrics Society, 55(5), 708–716.CrossRefGoogle Scholar
  149. Shanahan, M. J., & Hofer, S. M. (2005). Social context in gene-environment interactions: Retrospect and prospect. (Review). The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60(Spec No 1), 65–76.PubMedCrossRefGoogle Scholar
  150. Shawi, M., & Autexier, C. (2008). Telomerase, senescence and ageing. (Research Support, Non-U.S. Gov’t Review). Mechanisms of Ageing and Development, 129(1–2), 3–10. doi:10.1016/j.mad.2007.11.007.PubMedCrossRefGoogle Scholar
  151. Singh-Manoux, A., Marmot, M. G., & Adler, N. E. (2005).Does subjective social status predict health and change in health status better than objective status? Psychosomatic Medicine, 67(6), 855–861. doi:10.1097/01.psy.0000188434.52941.a0.PubMedCrossRefGoogle Scholar
  152. Staff, R. T., Murray, A. D., Deary, I. J., & Whalley, L. J. (2004).What provides cerebral reserve? Brain, 127(5), 1191–1199. doi:10.1093/brain/awh144.PubMedCrossRefGoogle Scholar
  153. Sterlemann, V., Rammes, G., Wolf, M., Liebl, C., Ganea, K., Muller, M. B., & Schmidt, M. V. (2010).Chronic social stress during adolescence induces cognitive impairment in aged mice. Hippocampus, 20(4), 540–549. doi:10.1002/hipo.20655.PubMedGoogle Scholar
  154. Sullivan, E. V., Pfefferbaum, A., Swan, G. E., & Carmelli, D. (2001). Heritability of hippocampal size in elderly twin men: Equivalent influence from genes and environment. Hippocampus, 11(6), 754–762.PubMedCrossRefGoogle Scholar
  155. Teter, B. (2004). ApoE-dependent plasticity in Alzheimer’s disease. (Review). Journal of Molecular Neuroscience, 23(3), 167–179. doi:10.1385/JMN:23:3:167.PubMedCrossRefGoogle Scholar
  156. Thomas, P., O’Callaghan, N. J., & Fenech, M. (2008). Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mechanisms Ageing and Development, 129(4), 183–190. doi:S0047-6374(07)00194-7 [pii] 10.1016/j.mad.2007.12.004.CrossRefGoogle Scholar
  157. Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., Toga, A. W. (2001).Genetic influences on brain structure. (Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.). Nature Neuroscience, 4(12), 1253–1258. doi:10.1038/nn758.PubMedCrossRefGoogle Scholar
  158. Vaillant, G. E. (2002). Aging well: Surprising guideposts to a happier life. Boston: Little, Brown.Google Scholar
  159. Valdes, A. M., Deary, I. J., Gardner, J., Kimura, M., Lu, X., Spector, T. D., Cherkas, L. F. (2008). Leukocyte telomere length is associated with cognitive performance in healthy women. Neurobiology of Aging, 31(6), 986–992. doi:S0197-4580(08)00256-X [pii] 10.1016/j.neurobiolaging.2008.07.012PubMedCrossRefGoogle Scholar
  160. van den Kommer, T. N., Dik, M. G., Comijs, H. C., Jonker, C., & Deeg, D. J. H. (2010). Homocysteine and inflammation: Predictors of cognitive decline in older persons? Neurobiology of Aging, 31(10), 1700–1709.CrossRefGoogle Scholar
  161. van der Sluis, S., Dolan, C. V., Neale, M. C., Boomsma, D. I., & Posthuma, D. (2006).Detecting genotype-environment Interaction in monozygotic twin data: Comparing the Jinks and Fulker test and a new test based on Marginal Maximum Likelihood estimation. Twin Research and Human Genetics, 9(3), 377–392. doi:10.1375/twin.9.3.377.PubMedGoogle Scholar
  162. van der Sluis, S., Dolan, C. V., Neale, M. C., & Posthuma, D. (2008). A general test for gene-environment interaction in sib pair-based association analysis of quantitative traits. Behavior Genetics, 38(4), 372–389.Google Scholar
  163. van der Sluis, S., Posthuma, D., & Dolan, C. (2012).A note on false positives and power in G × E modelling of twin data. Behavior Genetics, 42(1), 170–186. doi:10.1007/s10519-011-9480-3.PubMedCrossRefGoogle Scholar
  164. Vera, E., & Blasco, M. A. (2012). Beyond average: Potential for measurement of short telomeres. Aging, 4(6), 379–392.PubMedGoogle Scholar
  165. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563–565.CrossRefGoogle Scholar
  166. Wang, S. C., Oelze, B., & Schumacher, A. (2008). Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS ONE, 3(7), e2698. doi:10.1371/journal.pone.0002698.CrossRefGoogle Scholar
  167. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., & Herz, J. (2002).Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.). The Journal of Biological Chemistry, 277(42), 39944–39952. doi:10.1074/jbc.M205147200.PubMedCrossRefGoogle Scholar
  168. Wikgren, M., Karlsson, T., Nilbrink, T., Nordfjall, K., Hultdin, J., Sleegers, K., et al. (2010). APOE epsilon4 is associated with longer telomeres, and longer telomeres among epsilon4 carriers predicts worse episodic memory. Neurobiology of Aging, 33(2), 335–344. doi:S0197-4580(10)00115-6 [pii] 10.1016/j.neurobiolaging.2010.03.004.PubMedCrossRefGoogle Scholar
  169. Wu, J., Basha, M., & Zawia, N. (2008). The environment, epigenetics and amyloidogenesis. Journal of Molecular Neuroscience, 34(1), 1–7.PubMedCrossRefGoogle Scholar
  170. Zavala, C., Gatz, M., Johansson, B., Malmberg, B., Pedersen, N. L., & Reynolds, C. A. (2013, in preparation). Perceived socioeconomic status predicts cognitive trajectories: A cohort comparison.Google Scholar
  171. Zekry, D., Herrmann, F. R., Irminger-Finger, I., Ortolan, L., Genet, C., Vitale, A. M., et al. (2008). Telomere length is not predictive of dementia or MCI conversion in the oldest old. Neurobiology of Aging, 31(4), 719–720. doi:S0197-4580(08)00169-3 [pii] 10.1016/j.neurobiolaging.2008.05.016.PubMedCrossRefGoogle Scholar
  172. Zekry, D., Herrmann, F. R., Irminger-Finger, I., Graf, C., Genet, C., Vitale, A. M., et al. (2010). Telomere length and ApoE polymorphism in mild cognitive impairment, degenerative and vascular dementia. Journal of the Neurological Sciences, 299(1–2), 108–111. doi:S0022-510X(10)00342-4 [pii] 10.1016/j.jns.2010.07.019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Chandra A. Reynolds
    • 1
    Email author
  • Deborah Finkel
    • 2
  • Catalina Zavala
    • 3
  1. 1.Department of PsychologyUniversity of California-RiversideRiversideUSA
  2. 2.School of Social SciencesIndiana UniversityNew AlbanyUSA
  3. 3.Department of PsychologyUniversity of California-RiversideRiversideUSA

Personalised recommendations