Genetic and Environmental Influences on Intellectual Disability in Childhood

  • Michèle CarlierEmail author
  • Pierre L. Roubertoux
Part of the Advances in Behavior Genetics book series (AIBG, volume 1)


Intellectual disability is characterized as a limitation both in cognition and adaptive behavior. Its prevalence reaches 10–20 per 1,000, but lower and higher estimates could also be found depending on the populations surveyed and methods used (nationality and age of the population, national registry or not, cross-sectional data on children in mainstream public schools, data from special education schools, etc.). Moreover inconsistency in data collected may be largely attributable to the classifications system revisions. The main causes of intellectual disability are presented (genetic and environmental). It is assumed that in approximately half of intellectual disability cases, there is no known cause, but more requests are being made to screen for genetic defects in cases of moderate to severe intellectual disability. Environmental factors are numerous (intrauterine and neonatal insults, severe malnutrition, acute and chronic psychological stress, physical abuse, exposure to family violence, and institutional deprivation, etc.). The etiology of intellectual disability is complex and gene-environment correlations and/or interactions have been illustrated. Two genetic disorders linked to intellectual deficiency (Phenylketonuria and Fragile X) are selected to present both the research methodologies and the type of findings, before discussing the contribution of cross-syndrome comparisons. To uncover a causal link between genetic events and a behavioral phenotype, it is often essential to use model organisms. The advantage of such models, plus the requirements and limitations involved in their use, are presented. The conclusion argues that pathological model contributes in the understanding of the genetic mechanisms underlying cognitive differences within the normal range of variation


Intellectual Disability Intellectual Disability Fetal Alcohol Spectrum Disorder Fetal Alcohol Spectrum Disorder Fetal Alcohol Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AAIDD. (2010). Intellectual disability: definition, classification and system of supports/The AAIDD Ad Hoc Committee On terminology And Classification (11th ed.). Washington, DC: American Association on Intellectual and Developmental Disabilities.Google Scholar
  2. Aarts, H., Ruys, K. I., Veling, H., Renes, R. A., de Groot, J. H., van Nunen, A. M., et al. (2010). The art of anger: Reward context turns avoidance responses to anger-related objects into approach. Psychological Sciences, 21(10), 1406–1410.Google Scholar
  3. Abou J. R., Wohlfart, S., Zweier, M., Uebe, S., Priebe, L., Ekici, A., et al. (2011). Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. European Journal of Human Genetics, 19(11), 1161–1166.Google Scholar
  4. Altafaj, X., Dierssen, M., Baamonde, C., Marti, E., Visa, J., Guimera, J., et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice over-expressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Human Molecular Genetics, 10(18), 1915–1923.PubMedGoogle Scholar
  5. Anderson, P. J., Wood, S. J., Francis, D. E., Coleman, L., Anderson, V., & Boneh, A. (2007). Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Developmental Neuropsychology, 32(2), 645–668.PubMedGoogle Scholar
  6. Andersson, M., Karumbudathan, V., & Zimmermann, M. B. (2012). Global iodine status in 2011 and trends other the past decade. The Journal of Nutrition, 142(4), 744–750.PubMedGoogle Scholar
  7. Annaz, D., Karmiloff-Smith, A., Johnson, M. H., & Thomas, M. S. C. (2009). A cross-syndrome study of the development of holistic face recognition in children with autism, Down syndrome, and Williams syndrome. Journal of Experimental Child Psychology, 102(4), 456–486.PubMedGoogle Scholar
  8. Bailey, D. B., Hatton, D. D., & Skinner, M. (1998). Early developmental trajectories of males with fragile X syndrome. American Journal of Mental Retardation, 103(1), 29–39.PubMedGoogle Scholar
  9. Bailey, D. B., Hatton, D. D., Skinner, M., & Mesibov, G. (2001). Autistic behavior, FMR1 protein, and developmental trajectories in young males with Fragile X syndrome. Journal of Autism and Developmental Disorders, 31(2), 165–174.PubMedGoogle Scholar
  10. Bakker, C. E., Verheij, C., Willemsen, R., Vanderhelm, R., Oerlemans, F., Vermey, M., et al. (1994). FMR1 knockout mice: a model to study fragile X mental retardation. Cell, 78(1), 23–33.Google Scholar
  11. Banerjee, P., Grange, D. K., Steiner, R. D., & White, D. A. (2011). Executive strategic processing during verbal fluency performance in children with phenylketonuria. Child Neuropsychology, 17(2), 105–117.PubMedGoogle Scholar
  12. Bennetto, L., Pennington, B. F., Porter, D., Taylor, A. K., & Hagerman, R. J. (2001). Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology, 15(2), 290–299.PubMedGoogle Scholar
  13. Billuart, P., Bienvenu, T., Ronce, N., des Portes, V., Vinet, M. C., Zemni, R., et al. (1998). Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature, 392(6679), 923–926.PubMedGoogle Scholar
  14. Campbell, L. E., Azuma, R., Ambery, F., Stevens, A., Smith, A., Morris, R. G., et al. (2010). Executive functions and memory abilities in children with 22q11.2 deletion syndrome. The Australian and New Zealand Journal of Psychiatry, 44(4), 364–71.PubMedGoogle Scholar
  15. Campistol, J., Gassió, R., Artuch, R., & Vilaseca, M. A. (2011). Neurocognitive function in mild hyperphenylalaninemia. Developmental Medicine & Child Neurology, 53(5), 405–408.Google Scholar
  16. Carlier, M., & Ayoun, C. (2007). Déficiences intellectuelles et intégration sociale. Wavre: Mardaga.Google Scholar
  17. Carlier, M., Desplanches, A. G., Philip, N., Stefanini, S., Vicari, S., Volterra, V., et al. (2011). Laterality Preference and Cognition: Cross–Syndrome Comparison of Patients with Trisomy 21 (Down), del7q11.23 (Williams–Beuren) and del22q11.2 (DiGeorge or Velo–Cardio–Facial) syndromes (2011). Behavior Genetics, 41(3), 413–422.PubMedGoogle Scholar
  18. Chabert, C., Jamon, M., Cherfouh, A., Duquenne, V., Smith, D. J., Rubin, E., et al. (2004). Functional analysis of genes implicated in Down syndrome: 1. Cognitive abilities in mice transpolygenic for Down syndrome chromosomal region-1 (DCR-1). Behavior Genetics, 34(6), 559–569.PubMedGoogle Scholar
  19. Chabrol, B., Girard, N., N’Guyen, K., Gérard, A., Carlier, M., Villard, L., et al. (2005). Delineation of the clinical phenotype associated with OPHN–1 mutations based on the clinical and neuropsychological evaluation of three families. American Journal of Medical Genetics. Part A, 138(4), 314–317.PubMedGoogle Scholar
  20. Chapman, R. S., & Hesketh, L. J. (2000). Behavioral phenotype of individuals with Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 6(2), 84–95.PubMedGoogle Scholar
  21. Chen, L., Bao, S., & Thompson, R. F. (1999). Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice. Behavioral Neuroscience, 113(1), 204–10.PubMedGoogle Scholar
  22. Chiriboga, C. A. (2003). Fetal alcohol and drug effects. Neurologist, 9(6), 267–279.PubMedGoogle Scholar
  23. Chudley, A. E., Conry, J., Cook, J. L., Loock, C., Rosales, T., LeBlanc, N., et al. (2005). Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. Canadian Medical Association Journal Journal de l’association médicale canadienne, 172(5 Suppl), S1–S21.Google Scholar
  24. Cornish, K., Turk, J., & Hagerman, R. (2008). The fragile X continuum: New advances and perspectives. Journal of Intellectual Disability Research, 52(6), 469–482.PubMedGoogle Scholar
  25. Courtine, G., Bunge, M. B., Fawcet, J. W., Grossman, R. G., Kaas, J. H., Lemon, R., et al. (2007). Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nature Medicine, 13(5), 561–566.PubMedGoogle Scholar
  26. Couzens, D. Cuskelly, M., & Haynes, M. (2011). Cognitive development and Down syndrome: Age-related change on the Stanford–Binet test (Fourth Edition). American Journal of Intellectual Disability Deficiency, 116(3), 181–204.Google Scholar
  27. Crawford, D. C., Acuña, J. M., & Sherman, S. L. (2001). FMR1 and the fragileX syndrome: human genome epidemiology review. Genetics in medicine: official journal of the American College of Medical Genetics, 3(5), 359–371.Google Scholar
  28. Czarnetzki, R., Blin, N., & Pusch, C. M. (2003). Down’syndrome in ancient Europe. The Lancet, 362(9388), 1000.Google Scholar
  29. De Brouwer, A. P., Yntema, H. G., Kleefstra, T., Lugtenberg, D., Oudakker, A. R., de Vries, B. B., et al. (2007). Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Human Mutation, 28(2), 207–208.PubMedGoogle Scholar
  30. De Rubeis, S., & Bagni, C. (2011). Regulation of molecular pathways in the Fragile X Syndrome: Insights into Autism Spectrum Disorders. Journal of Neurodevelopmental Disorders, 3(3), 257–269.PubMedGoogle Scholar
  31. De Rubeis, S., Fernández, E., Buzzi, A., Di Marino, D., & Bagni, C. (2012). Molecular and cellular aspects of mental retardation in the Fragile X syndrome: From gene mutation/s to spine dysmorphogenesis. Advances in Experimental Medicine and Biology, 970, 517–51.PubMedGoogle Scholar
  32. De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., et al. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science, 300(5628), 2055.PubMedGoogle Scholar
  33. De Smedt, B., Devriendt, K., Fryns, J.–P., Vogels, A., Gewillig, M., & Swillen, A. (2007). Intellectual abilities in a large sample of children with velo-cardio-facial syndrome: An update. Journal of Intellectual Disability Research, 51(9), 666–670.PubMedGoogle Scholar
  34. De Smedt, B., Swillen, A., Verschaffel, L., & Ghesquière, P. (2009). Mathematical learning disabilities in children with 22q11.2 deletion syndrome: a review. Developmental Disabilities Research Reviews, 15(1), 4–10.PubMedGoogle Scholar
  35. de Vries, P. J. (2010). Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics, 7(3), 275–282.Google Scholar
  36. de Vries, B. B., White, S. M., Knight, S. J., Regan, R., Homfray, T., Young, I. D. et al. (2001). Clinical studies on submicroscopic subtelomeric rearrangements: A checklist. Journal of Medical Genetics, 38(3), 145–150.PubMedGoogle Scholar
  37. de Vries, B. B., Winter, R., Schinzel, A., & van, R. avenswaaij–A. rts (2003). Telomeres: A diagnosis at the end of chromosomes. Journal of Medical Genetics, 40(6), 385–398.PubMedGoogle Scholar
  38. Delabar, J.-M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J.-L., Prieur, M., Noel, B., & Sinet, P.-M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. European Journal of Human Genetics, 1(2), 114–124.PubMedGoogle Scholar
  39. Delrieu, J., Ousset, P. J., Caillaud, C., & Vellas, B. (2012). Clinical trials in Alzheimer’s disease’: Immunotherapy approaches. Journal of Neurochemistry, 120(Suppl 1), 186–193.PubMedGoogle Scholar
  40. DISTAT Department of International Economic and Social Affairs Statistical Office. (1990). Statistics on special population groups, Series Y, No 4 Disability Statistics Compendium. United Nations. Accessed 30 Jan 2012.
  41. DeRoche, K., & Welsh, M. (2008). Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: Intelligence and executive function. Developmental Neuropsychology, 33(4), 474–504.PubMedGoogle Scholar
  42. Eckert, M. A., Galaburda, A. M., Mills, D. L., Bellugi, U., Korenberg, J. R., & Reiss, A. L. (2006). The neurobiology of Williams syndrome: Cascading influences of visual system impairment? Cellular and Molecular Life Science, 63(16), 1867–1875.Google Scholar
  43. Edgin, J. O., Mason, G. M., Allman, M. J., Capone, G. T., Deleon, I., Maslen, C., et al. (2010). Development and validation of the Arizona cognitive test battery for Down syndrome. Journal of Neurodevelopmental Disorders, 2(3), 149–164.PubMedGoogle Scholar
  44. Enea–Drapeau, C., Carlier, M., & Huguet, P. (2012) Tracking subtle stereotypes of children with Trisomy 21: From facial-feature-based to implicit stereotyping. PLoS ONE, 7(4), e34369. doi:10.1371/journal.pone.0034369.Google Scholar
  45. Fisch, G. S. (1997). Longitudinal assessment of cognitive behavioral deficits produced by the Fragile-X mutation. International Review of Research in Mental Retardation, 21, 221–247.Google Scholar
  46. Fisch, G. S. (2011). Mental retardation or intellectual disability? Time for a change. American Journal of Medical Genetics, 155A(12), 2907–2908.Google Scholar
  47. Fisch, G. S., Simenson, R. J., Tarleton, J., Chalifoux, M., Holden, J. A., Carpenter, N., et al. (1996). Longitudinal study of cognitive abilities and adaptive behavior levels in Fragile X males. American Journal of Medical Genetics, 64, 356–361.PubMedGoogle Scholar
  48. Fisch, G. S., Simensen, R. J., & Schroer, R. J. (2002). Longitudinal changes in cognitive and adaptive behavior scores in children and adolescents with the Fragile X mutation or autism. Journal of Autism and Developmental Disorders, 32(2), 107–114.PubMedGoogle Scholar
  49. Foti, F., Menghini, D., Petrosini, L., Valerio, G., Crinò, A., Vicari, S., et al. (2011). Spatial competences in Prader-Willi syndrome: A radial arm maze study. Behavior Genetics, 41(3), 445–456.PubMedGoogle Scholar
  50. Fuchs, D., Burnside, L., Marchenski, S., Mudry, A. (2007). Children with disabilities involved with the child welfare system in Manitoba: Current and future challenges. In I. Brown, F. Chaze, D. Fuchs, J. Lafrance, S. McKay, & S. Thomas Prokop (Eds.), Putting a human face on child welfare: Voices from the Prairies (pp. 127–145). Prairie Child Welfare Consortium Centre of Excellence for Child Welfare www.cecw–
  51. Gallagher, A., & Hallahan, B. (2012). Fragile X-associated disorders: A clinical overview. Journal of Neurology, 259(3), 401–413.PubMedGoogle Scholar
  52. Gécz, J., Shoubridge, C., & Corbett, M. (2009). The genetic landscape of intellectual disability arising from chromosome X. Trends in Genetics, 25(7), 309–316.Google Scholar
  53. Giovannini, M., Verduci, E., Salvatici, E., Paci, S., & Riva, E. (2012). Phenylketonuria: nutritional advances and challenges. Nutrition & Metabolism (London), 9(1), 7.Google Scholar
  54. Godler, D. E., Slater, H. R., Bui, Q. M., Storey, E., Ono, M. Y., Gehling, F., et al. (2012). Fragile X mental retardation 1 (FMR1) intron 1 methylation in blood predicts verbal cognitive impairment in female carriers of expanded FMR1 alleles: Evidence from a pilot study. Clinical Chemistry, 58(3), 590–598.PubMedGoogle Scholar
  55. Goodrich–Hunsaker, N. J., Wong, L. M., McLennan, Y., Srivastava, S., Tassone, F., Harvey, D., et al. (2011). Young adult female fragile X premutation carriers show age-and genetically-modulated cognitive impairments. Brain and Cognition, 75(3), 255–260.PubMedGoogle Scholar
  56. Guimera, J., Casas, C., Pucharcos, C., Solans, A., Domenech, A., Planas, A. M., et al. (1996). A human homologue of Drosophila minibrain (MBN) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Human Molecular Genetics, 5(9), 1305–1310.PubMedGoogle Scholar
  57. Hagerman, P. J., & Hagerman, R. J. (2007). Fragile X associated tremor/ataxia syndrome—an older face of the fragile X gene. Nature Clinical Practice Neurology, 3(2), 107–112.PubMedGoogle Scholar
  58. Hagerman, R., Kemper, M., & Hudson, M. (1985). Learning disabilities and attentional problems in boys with the fragile X syndrome. American Journal of Diseases of Children, 139(7), 674–678.PubMedGoogle Scholar
  59. Hall, S. S., Burns, D. D., Lightbody, A. A., & Reiss, A. L. (2008). Longitudinal changes in intellectual development in children with Fragile X syndrome. Journal of Abnormal Child Psychology, 36(6), 927–939.PubMedGoogle Scholar
  60. Hall, S. S., Lightbody, A. A., Hirt, M., Rezvani, A., & Reiss, A. L. (2010). Autism in fragile X syndrome: a category mistake? Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 921–933.PubMedGoogle Scholar
  61. Hansen, K. F., Sakamoto, K., Wayman, G. A., Impey, S., & Obrietan, K. (2010). Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One, 5(11):e15497, doi:10.1371/journal.pone.0015497.Google Scholar
  62. Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., et al. (2000). The DNA sequence of human chromosome 21. Nature, 405(6784), 311–319.PubMedGoogle Scholar
  63. Heisenberg, M., Borst, A., Wagner, S., & Byers, M. D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2(1), 1–30.PubMedGoogle Scholar
  64. Hessl, D., Nguyen, D. V., Green, C., Chavez, A., Tassone, F., Hagerman, R. J., et al. (2009). A solution to limitations of cognitive testing in children with intellectual disabilities: the case of fragile X syndrome. Journal of Neurodevelopmental Disorders, 1(1), 33–45.PubMedGoogle Scholar
  65. Hooper, M., Hardy, K., Handyside, A., Hunter, S., & Monk, M. (1987). HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature, 326(6110), 295–298.Google Scholar
  66. Human Resources and Skills Development Canada. (2011). Disability in Canada: A 2006 profile. Accessed Mar 2012.
  67. Hunter, J. E., Sherman, S., Grigsby, J., Kogan, C., & Cornish, K. (2012). Capturing the fragile X premutation phenotypes: A collaborative effort across multiple cohorts. Neuropsychology, 26(2), 156–164.PubMedGoogle Scholar
  68. Itard, J. (1801). Mémoire sur les premiers développements de Victor de l’Aveyron. Paris English traduction (1802) An historical account of the discovery and Education of a Savage Man, or of the first developments, physical and moral, of the Young sauvage caught in the woods near Aveyron, in the year 1798. London: Richard Phillips.
  69. Ivanovic, D. M., Leiva, B. P., Perez, H. T., Inzunza, N. B., Almagià, A. F., Toro, T. D., et al. (2000). Long-term effects of severe undernutrition during the first year of life on brain development and learning in Chilean high-school graduates. Nutrition, 16(11–12), 1056–1063.PubMedGoogle Scholar
  70. Jacquemont, S., Hagerman, R. J., Hagerman, P. J., & Leehey, M. A. (2007). Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: Two faces of FMR1. Lancet Neurology, 6(1), 45–55.PubMedGoogle Scholar
  71. Kahlem, P. (2006). Gene dosage effect on chromosome 21 transcriptome in trisomy 21: Implication in Down’s syndrome cognitive disorders. Behavior Genetics, 36(3), 416–428.PubMedGoogle Scholar
  72. Kahlem, P., Sultan, M., Herwig, R., Steinfath, M., Balzereit, D., Eppens, B., et al. (2004). Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of Down syndrome. Genome Research, 14(7), 1258–1267.PubMedGoogle Scholar
  73. Kayaalp, E., Treacy, E., Waters, P. J., Byck, S., Nowacki, P., & Scriver, C. R. (1997). Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: A metanalysis of genotype-phenotype correlations. American Journal of Human Genetics, 61(6), 1309–1317.PubMedGoogle Scholar
  74. Koolen, D. A., Nillesen, W. M., Versteeg, M. H., Merkx, G. F., Knoers, N. V., Kets, M., et al. (2004). Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). Journal of Medical Genetics, 41(12), 892–899.PubMedGoogle Scholar
  75. Korenberg, J. R., Chen, X. N., Schipper, R., Sun, Z., Gonsky, R., Gerwehr, S., et al. (1994). Down syndrome phenotypes: the consequences of chromosomal imbalance. Proceedings of the National Academy of Science of the United States of America, 91(11), 4997–5001.Google Scholar
  76. Koukoui, S. D., & Chaudhuri, A. (2007). Neuroanatomical, molecular genetic, and behavioral correlates of fragile X syndrome. Brain Research Reviews, 53(1), 27–38.PubMedGoogle Scholar
  77. Kozomara, A., & Griffiths-Jones, S. (2011). miRbase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39(Database issue), D152–D157.Google Scholar
  78. Kuehn, M. R., Bradley, A., Robertson, E. J., & Evans, M. J. (1987). A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature, 326(6110), 295–298.PubMedGoogle Scholar
  79. Lachiewicz, A. M., & Dawson, D. V. (1994). Behavior problems of young girls Fragile X syndrome: Factor scores on the Conners’ parent’s questionnaire. American Journal of Medical Genetics, 51(4), 364–369.PubMedGoogle Scholar
  80. Lejeune, J., Turpin, B., & Gauthier, M. (1959). Le mongolisme, premier exemple d’aberration autosomique humaine. Annales de Génétique, 1(2), 41–49.Google Scholar
  81. Leonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Review, 8(3), 117–34.Google Scholar
  82. Lightbody, A. A., & Reiss, A. L. (2009). Gene, brain, and behavior relationships in fragile X syndrome: Evidence from neuroimaging studies. Developmental Disabilities Research Review, 15(4), 343–352.Google Scholar
  83. Lightbody, A. A., Hall, S. S., & Reiss, A. L. (2006). Chronological age, but not FMRP levels, predicts neuropsychological performance in girls with fragile X syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(5), 468–472.Google Scholar
  84. Lombard, Z., Tiffin, N., Hofmann, O., Bajic, V. B., Hide, W., & Ramsay, M. (2007). Computational selection and prioritization of candidate genes for fetal alcohol syndrome. BMC Genomics, 8, 389.PubMedGoogle Scholar
  85. Lyle, R., Gehrig, C., Neergaard-Henrichsen, C., Deutsch, S., & Antonarakis, S. E. (2004). Gene expression from the aneuploid chromosome in a trisomy mouse model of Down syndrome. Genome Research, 14(7), 1268–1274.Google Scholar
  86. Manolakos, E., Vetro, A., Kefalas, K., Rapti, S. M., Louizou, E., Garas, A., et al. (2010). The use of array-CGH in a cohort of Greek children with developmental delay. Molecular Cytogenetics, 3, 22.PubMedGoogle Scholar
  87. Mason, R. P., & Giorgini, F. (2011). Modeling Huntington disease in yeast: Perspectives and future directions. Prion, 5(4) (Epub ahead of print).Google Scholar
  88. May, P. A., Fiorentino, D., Coriale, G., Kalberg, W. O., Hoyme, H. E., Aragón, A. S., et al. (2011). Prevalence of children with severe fetal alcohol spectrum disorders in communities near Rome, Italy: New estimated rates are higher than previous estimates. International Journal of Environmental Research and Public Health, 8(6), 2331–2351.PubMedGoogle Scholar
  89. McDermott, S., Durkin, M. S., Schupf, N., & Stein, Z. A. (2007). Epidemiology and etiology in mental retardation. In J. W. Jacobson, J. A. Mulick, & J. Rojahn (Eds.), Handbook of intellectual and developmental disabilities (pp. 3–40). New York: Springer.Google Scholar
  90. McDuffie, A., & Abbeduto, L. (2009). Language disorders in children with mental retardation of genetic origin: Down syndrome, fragile X and Williams syndrome. In R. G. Schwartz (Ed.), Handbook of child language disorders (pp. 44–66). New York: Psychology Press.Google Scholar
  91. McKinney, W. T. (1977). Biobehavioral models of depression in monkeys. In E. Usdin & I. Hanin (Eds.), Animal models in psychiatry and neurology (pp. 117–126). Oxford: Pergamon Press.Google Scholar
  92. McKusick, V. A. (2007). Mendelian Inheritance in Man and its online version, OMIM. American Journal of Human Genetics, 80(4), 588–604.PubMedGoogle Scholar
  93. Menghini, D., Costanzo, F., & Vicari, S. (2011a). Relationship between brain and cognitive processes in persons with Down syndrome. Behavior Genetics, 41(3), 381–393.Google Scholar
  94. Menghini, D., Di Paola, M., Federico, F., Vicari, S., Petrosini, L., Caltagirone, C., et al. (2011b). Relationship between brain abnormalities and cognitive profile in Williams syndrome. Behavior Genetics, 41(3), 394–402.Google Scholar
  95. Meyer-Lindenberg, A., Mervis, C. B., & Faith Berman, K. (2006). Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behavior. Nature Reviews Neuroscience, 7(5), 367–379.Google Scholar
  96. Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445–468.PubMedGoogle Scholar
  97. Möller, H. E., Weglage, J., Bick, U., Wiedermann, D., Feldmann, R., & Ullrich, K. (2003). Brain imaging and proton magnetic resonance spectroscopy in patients with phenylketonuria. Pediatrics, 112(6 Pt 2), 1580-, 1583.Google Scholar
  98. Morris, C. A., & Mervis, C. B. (2000). Williams syndrome and related disorders. Annual Review of Genomics and Human Genetics, 1, 461–484.PubMedGoogle Scholar
  99. Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56(10), 940–945.PubMedGoogle Scholar
  100. Musso, M. W., Barker, A. A., Proto, D. A., & Gouvier, W. D. (2012). College students’ conceptualizations of deficits involved in mild intellectual disability. Research in Developmental Disability, 33, 224–228.Google Scholar
  101. Mwaniki, M. K., Atieno, M., Lawn, J. E., & Newton, C. R. (2012). Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet, 379(9814), 445–452.PubMedGoogle Scholar
  102. Naidu, S., Kaufmann, W. E., Abrams, M. T., Pearlson, G. D.., Lanham, D. C., Fredericksen, K. A., et al. (2001). Neuroimaging studies in Rett syndrome. Brain Development, 23(Suppl 1), S62–S71.Google Scholar
  103. Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S. S., Chen, W., et al. (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367), 57–63.PubMedGoogle Scholar
  104. Oberlé, I., Rousseau, F., Heitz, D., Kretz, C., Devys, D., Hanauer, A., Boué, J., Bertheas, M. F., & Mandel, J. L. (1991). Instability of a 550-base pair DNA segment and abnormal methylation in Fragile X syndrome. Science, 252(5010), 1097–1102.PubMedGoogle Scholar
  105. Okasha, A. (1999). Mental health in the Middle East: An Egyptian perspective. Clinical Psychology Review, 19(8), 917–933.PubMedGoogle Scholar
  106. OMIM Online Medelian Inheritance in Man Johns Hopkins University.
  107. Osorio, F. G., Navarro, C. L., Cadiñanos, J., López-Mejàa, I. C., Quirós, P. M., Bartoli. C., et al. (2011). Splicing-directed therapy in a new mouse model of human accelerated aging. Science Translational Medicine, 3(106), 106ra107.Google Scholar
  108. Participation and Activity Limitation Survey, (P. A. L. S.). (2006). Human resources and skills development Canada. Accessed 6 Mar 2012.
  109. Philip, N., & Bassett, A. (2011). Cognitive, behavioral and psychiatric phenotype in 22q11.2 deletion syndrome. Behavior Genetics, 41(3), 403–412.PubMedGoogle Scholar
  110. Popp, M. S., Schulze, B., Granzow, M., Keller, M., Holtgreve–Grez, H., Schoell, B., et al. (2002). Study of 30 patients with unexplained developmental delay and dysmorphic features or congenital abnormalities using conventional cytogenetics and multiplex FISH telomere (M–TEL) integrity assay. Human Genetics, 111(1), 31–39.PubMedGoogle Scholar
  111. Prick, B. W., Hop, W. C. J., & Duvekot, J. J. (2012). Maternal phenylketonuria and hyperphenylalaninemia in pregnancy: Pregnancy complications and neonatal sequelae in untreated and treated pregnancies. The American Journal of Clinical Nutrition, 95(2), 374–382.PubMedGoogle Scholar
  112. Raux, G., Bumsel, E., Hecketsweiler, B., van Amelsvoort, T., Zinkstok, J., Manouvrier-Hanu, S., et al. (2007). Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Human Molecular Genetics, 16(1), 83–91.PubMedGoogle Scholar
  113. Reiss, A., L., & Dant, C. C. (2003). The behavioral neurogenetics of fragile X syndrome: Analyzing gene-brain-behavior relationships in child developmental psychopathologies. Development and Psychopathology, 15(4), 927–968.PubMedGoogle Scholar
  114. Reymond, A., Marigo, V., Yaylaoglu, M. B., Leoni, A., Ucla, C., Scamuffa, N., et al. (2002). Human chromosome 21 gene expression atlas in the mouse. Nature, 420(6915), 582–586.PubMedGoogle Scholar
  115. Robbins, T. W., & Sahakian, B. J. (1979). ‘‘Paradoxical’’ effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioral pharmacology. Neuropharmacology, 18(12), 931–950.PubMedGoogle Scholar
  116. Ropers, H. H. (2008). Genetics of intellectual disability. Current Opinion in Genetics & Development, 18(3), 241–250.Google Scholar
  117. Roubertoux, P. (2004). Existe–t–il des gènes du comportement. Paris: Odile Jacob.Google Scholar
  118. Roubertoux, M., & Carlier, M. (2007). From DNA to the mind. EMBO Reports, 8(Science & Society, Special Issue), S7–S11.Google Scholar
  119. Roubertoux, P. L., & Carlier, M. (2009). Neurogenetic analysis and cognitive functions in Trisomy 21. In Y. K. Kim (Ed.), Handbook of behavior genetics (pp. 175–185). New York: Springer.Google Scholar
  120. Roubertoux, P. L., & Carlier, M. (2011). Good use and misuse of “genetic determinism”. Journal of Physiology-Paris, 105, 190–194.Google Scholar
  121. Roubertoux, P. L., & Kerdelhué, B. (2006). Trisomy 21: From chromosome to mental retardation. Behavior Genetics, 36(3), 346–354.PubMedGoogle Scholar
  122. Rutter, M., Sonuga-Barke, E. J., & Castle, J. (2010). I. Investigating the impact of early institutional deprivation on development: Background and research strategy of the English and Romanian adoptees (ERA) study. Monographs of the Society for Research in Child Development, 75(1), 1–20.PubMedGoogle Scholar
  123. Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887.PubMedGoogle Scholar
  124. Saywell, V., Viola, A., Confort-Gouny, S., Le Fur, Y., Villard, L., & Cozzone, P. J. (2006). Brain magnetic resonance study of MECP2 deletion effects on anatomy and metabolism. Biochemical and Biophysical Research Communications, 340(3), 776–783.PubMedGoogle Scholar
  125. Schaevitz, L. R., Moriuchi, J. M., Nag, N., Mellot, T. J., & Berger-Sweeney, J. (2010). Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiology & Behavior, 100(3), 255–263.Google Scholar
  126. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400(6740), 173–717.PubMedGoogle Scholar
  127. Schuurs-Hoeijmakers, J. H., Hehir-Kwa, J. Y., Pfundt, R., van Bon, B. W., de Leeuw, N., Kleefstra, T., et al. (2011). Homozygosity mapping in outbred families with mental retardation. European Journal of Human Genetics, 19(5), 597–601.PubMedGoogle Scholar
  128. Seguin, E. (1846). Traitement moral, hygiène et éducation des idiots et des autres enfants arriérés. Paris: Baillère.
  129. Seltzer, M. M., Barker, E. T., Greenberg, J. S., Hong, J., Coe, C., & Almeida, D. (2011). Differential sensitivity to life stress in FMR1 premutation carrier mothers of children with fragile X syndrome. Health Psychology, Dec 12. (Epub ahead of print)Google Scholar
  130. Sérégaza, Z., Roubertoux, P. L., Jamon, M., & Soumireu-Mourat, B. (2006). Mouse models of cognitive disorders in trisomy 21: A review. Behavior Genetics, 36(3), 387–404.Google Scholar
  131. Sharman, R., Sullivan, K., Young, R., & McGill, J. (2010). A preliminary investigation of the role of the phenylalanine: Tyrosine ratio in children with early and continuously treated phenylketonuria: Toward identification of ‘safe’ levels. Developmental Neuropsychology, 35(1), 57–65.PubMedGoogle Scholar
  132. Smith, M. (2006). Mental retardation and developmental delay. Genetic and epigenetic factors. Oxford: University Press.Google Scholar
  133. Smith, D. J., Zhu, Y., Zhang, J., Cheng, J. F., & Rubin, E. M. (1995). Construction of a panel of transgenic mice containing a contiguous 2 Mb set of YAC/P1 clones from human chromosome. Genomics, 27(3), 425–434.PubMedGoogle Scholar
  134. Smith, D. J., Stevens, M. E., Sudanagunta, S. P., Bronson, R. T., Makhinson, M., Watabe, A. M., et al. (1997). Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nature Genetics, 16(1), 28–36.PubMedGoogle Scholar
  135. Song, W. J., Sternberg, L. R., Kasten-Sportes, C., Keuren, M. L., Chung, S. H., Slack, A. C., et al. (1996). Isolation of human and murine homologues of the Drosophila minibrain gene: Human homologue maps to 21q22.2 in the Down syndrome ‘‘critical region’’. Genomics, 38(3), 331–339.PubMedGoogle Scholar
  136. Stratton, K., Howe, C., & Battaglia, F. (1996). Fetal alcohol syndrome. Diagnostic, epidemiology, prevention, and treatment. Washington DC: New York Academy Press.Google Scholar
  137. Strømme, P., Bjørnstad, P. G., & Ramstad, K. (2002). Prevalence estimation of Williams syndrome. Journal of Child Neurology, 17(2), 269–271.PubMedGoogle Scholar
  138. Schwartz, C. E., Dean, J., Howard-Peebles, P. N., Bugge, M., Mikkelsen, M., Tommerup, N., et al. (1994). Obstetrical and gynecological complications in fragile X carriers: a multicenter study. American Journal of Medical Genetics, 51(4), 400–402.PubMedGoogle Scholar
  139. Tauber, E., Miller-Fleming, L., Mason, R. P., Kwan, W., Clapp, J., Butler, J. N., et al. (2011). Functional gene expression profiling in yeast implicates translational dysfunction in mutant huntingtin toxicity. The Journal of Biological Chemistry, 286(1), 410–419.PubMedGoogle Scholar
  140. Taylor, E., & Rogers, J. W. (2005). Practitioner review: Early adversity and developmental disorders. Journal of Child Psychology and Psychiatry, 46(5), 451–467.PubMedGoogle Scholar
  141. Tejedor, F., Zhu, X. R., Kaltenbach, E., Ackermann, K., Baumann, A., Canal, I., et al. (1995). Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron, 14(2), 287–301.PubMedGoogle Scholar
  142. Tenenbaum, A., Hertz, P., Dor, T., Castiel, Y., Sapir, A., & Wexler, I. D. (2011). Fetal alcohol spectrum disorder in Israel: Increased prevalence in an at-risk population. The Israel Medical Association Journal: IMAJ, 13(12), 725–729.PubMedGoogle Scholar
  143. Thomas, M. S. C., Annaz, D., Ansari, D., Scerif, G., Jarrold, C., & Karmiloff-Smith, A. (2009). Using developmental trajectories to understand developmental disorders. Journal of Speech, Language, and Hearing Research, 52(2), 336–358.PubMedGoogle Scholar
  144. Thompson, L., & Gillberg, C. (2012). Behavioral problems from perinatal and neonatal insults. The Lancet, 379(9814), 392–393.Google Scholar
  145. Tordjman, S., Drapier, D., Bonnot, O., Graignic, R., Fortes, S., Cohen, D., et al. (2007). Animal models relevant to schizophrenia and autism: validity and limitations. Behavior Genetics, 37(1), 61–78.PubMedGoogle Scholar
  146. Tordjman, S., Anderson, G. M., Botbol, M., Toutain, A., Sarda, P., Carlier, M., et al. (2012) Autistic disorder in patients with Williams-Beuren syndrome: A reconsideration of the Williams-Beuren syndrome phenotype. PLoS ONE, 7(3), e30778. doi:10.1371/journal.pone.0030778.Google Scholar
  147. Turner, G., & Turner, B. (1074). X-linked mental retardation. Journal of Medical Genetics, 11, 109–113.Google Scholar
  148. United Nations/Nations Unies (2011). 2009–2011 DemographicyearbookAnnuaire démographique Sixty-first issus/Soixante et unième édition. United Nations/ Nations Unies. Economic & Social Affairs. Accessed 30 Jan 2012.
  149. Viau, K. S., Wengreen, H. J., Ernst, S. L., Cantor, N. L., Furtado, L. V., & Longo, N. (2011). Correlation of age-specific phenylalanine levels with intellectual outcome in patients with phenylketonuria. Journal of Inherited Metabolic Disease, 34(4), 963–971.PubMedGoogle Scholar
  150. Vicari, S. (2006). Motor development and neuropsychological patterns in persons with Down syndrome. Behavior Genetics, 36(3), 355–364.PubMedGoogle Scholar
  151. Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries P., et al. (2010). A de novo paradigm for mental retardation. Nature Genetics, 42(12), 1109–1112.PubMedGoogle Scholar
  152. Waisbren, S. E., Noel, K., Fahrbach, K., Cella, C., Frame, D., Dorenbaum, A., et al. (2007). Phenylalanine blood levels and clinical outcomes in phenylketonuria: A systematic literature review and meta-analysis. Molecular Genetics and Metabolism, 92(1–2), 63–70.PubMedGoogle Scholar
  153. Walter, E., Mazaika, P. K., & Reiss, A. L. (2009). Insights into brain development from neurogenetic syndromes: Evidence from fragile X syndrome, Williams syndrome, Turner syndrome and velo-cardio-facial syndrome. Neuroscience, 164(1), 257–271.PubMedGoogle Scholar
  154. Wang, R., Bray, S. M., & Warren, S. (2012). New perspectives on the biology of fragile X syndrome. Current Opinion in genetics & Development, 22, 256–263.Google Scholar
  155. Warren, S. F., Brady, N.C. (2007). The role of maternal responsivity in the development of children with intellectual disabilities. Mental Retardation & Developmental Disabilities Research Reviews, 13(4), 330–338.Google Scholar
  156. Warren, K. R., & Hewitt, B. G. (2009). Fetal alcohol spectrum disorders: When science, medicine, public policy, and laws collide. Developmental Disabilities Research Reviews, 15, 170–175.PubMedGoogle Scholar
  157. Warren, K. R., & Li, T. K. (2005). Genetic polymorphisms: Impact on the risk of fetal alcohol spectrum disorder. Birth Defects Research Part A Clinical and Molecular Teratology, 73(4), 195–203.Google Scholar
  158. Warren, S. F., Brady, N., Sterling, A., Fleming, K., & Marquis, J. (2010). Maternal responsivity predicts language development in young children with Fragile X syndrome. American Journal on Intellectual and Developmental Disabilities, 115(1), 54–75.PubMedGoogle Scholar
  159. Watanabe, H., Fujiyama, A., Hattori, M., Taylor, T. D., Toyoda, A., Kuroki, Y., et al. (2004). DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature, 429(6990), 382–388.PubMedGoogle Scholar
  160. Williams, R. A., Mamotte, C. D., & Burnett, J. R. (2008). Phenylketonuria: an inborn error of phenylalanine metabolism. The Clinical Biochemist Reviews, 29(1), 31–41.Google Scholar
  161. WHO (2001). World health assembly resolution. Accessed 18 April 2007
  162. World Health Organization (WHO). (2002). Towards a common language for functioning, disability and health, ICF. www.designfor21st. org/documents/who_icf_2002.pdf. Accessed 18 April 2007
  163. Wu, C. L., & Melton, D. W. (1993). Production of a model for Lesch–Nyhan syndrome in Hypoxanthine phosphoribosyltransferase-deficient mice. Nature Genetics, 3(3), 235–240.PubMedGoogle Scholar
  164. Youngstrom, E. A., Glutting, J. J., & Watkins, M. W. (2003). Stanford–Binet intelligence scale: Fourth Edition (SB4): Evaluating the empirical bases for interpretations. In C. R. Reynolds & R. W. Kamphaus (Eds.), Handbook of psychological & educational assessment of children (2nd ed., pp. 217–242). New York: Guilford Press.Google Scholar
  165. Yu, S., Pritchard, M., Kremer, E., Lynch, M., Nancarrow, J., Baker, E., et al. (1991). Fragile X Genotype characterized by an unstable region of DNA. Science, 252(5010), 1179–1181.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS UMR 7290 Psychologie Cognitive, Fédération de Recherche 3C - Comportement Cerveau CognitionMarseilleFrance
  2. 2.Aix-Marseille Université, Génétique et Neurosciences, INSERM U 910, Génétique Médicale, Génomique FonctionnelleMarseilleFrance

Personalised recommendations