Skip to main content

Genetic and Environmental Influences on Intellectual Disability in Childhood

  • Chapter
  • First Online:

Part of the book series: Advances in Behavior Genetics ((AIBG,volume 1))

Abstract

Intellectual disability is characterized as a limitation both in cognition and adaptive behavior. Its prevalence reaches 10–20 per 1,000, but lower and higher estimates could also be found depending on the populations surveyed and methods used (nationality and age of the population, national registry or not, cross-sectional data on children in mainstream public schools, data from special education schools, etc.). Moreover inconsistency in data collected may be largely attributable to the classifications system revisions. The main causes of intellectual disability are presented (genetic and environmental). It is assumed that in approximately half of intellectual disability cases, there is no known cause, but more requests are being made to screen for genetic defects in cases of moderate to severe intellectual disability. Environmental factors are numerous (intrauterine and neonatal insults, severe malnutrition, acute and chronic psychological stress, physical abuse, exposure to family violence, and institutional deprivation, etc.). The etiology of intellectual disability is complex and gene-environment correlations and/or interactions have been illustrated. Two genetic disorders linked to intellectual deficiency (Phenylketonuria and Fragile X) are selected to present both the research methodologies and the type of findings, before discussing the contribution of cross-syndrome comparisons. To uncover a causal link between genetic events and a behavioral phenotype, it is often essential to use model organisms. The advantage of such models, plus the requirements and limitations involved in their use, are presented. The conclusion argues that pathological model contributes in the understanding of the genetic mechanisms underlying cognitive differences within the normal range of variation

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In some papers, the old label “mental retardation” is kept and the genes are labeled MR genes.

References

  • AAIDD. (2010). Intellectual disability: definition, classification and system of supports/The AAIDD Ad Hoc Committee On terminology And Classification (11th ed.). Washington, DC: American Association on Intellectual and Developmental Disabilities.

    Google Scholar 

  • Aarts, H., Ruys, K. I., Veling, H., Renes, R. A., de Groot, J. H., van Nunen, A. M., et al. (2010). The art of anger: Reward context turns avoidance responses to anger-related objects into approach. Psychological Sciences, 21(10), 1406–1410.

    Google Scholar 

  • Abou J. R., Wohlfart, S., Zweier, M., Uebe, S., Priebe, L., Ekici, A., et al. (2011). Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. European Journal of Human Genetics, 19(11), 1161–1166.

    Google Scholar 

  • Altafaj, X., Dierssen, M., Baamonde, C., Marti, E., Visa, J., Guimera, J., et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice over-expressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Human Molecular Genetics, 10(18), 1915–1923.

    PubMed  Google Scholar 

  • Anderson, P. J., Wood, S. J., Francis, D. E., Coleman, L., Anderson, V., & Boneh, A. (2007). Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Developmental Neuropsychology, 32(2), 645–668.

    PubMed  Google Scholar 

  • Andersson, M., Karumbudathan, V., & Zimmermann, M. B. (2012). Global iodine status in 2011 and trends other the past decade. The Journal of Nutrition, 142(4), 744–750.

    PubMed  Google Scholar 

  • Annaz, D., Karmiloff-Smith, A., Johnson, M. H., & Thomas, M. S. C. (2009). A cross-syndrome study of the development of holistic face recognition in children with autism, Down syndrome, and Williams syndrome. Journal of Experimental Child Psychology, 102(4), 456–486.

    PubMed  Google Scholar 

  • Bailey, D. B., Hatton, D. D., & Skinner, M. (1998). Early developmental trajectories of males with fragile X syndrome. American Journal of Mental Retardation, 103(1), 29–39.

    PubMed  Google Scholar 

  • Bailey, D. B., Hatton, D. D., Skinner, M., & Mesibov, G. (2001). Autistic behavior, FMR1 protein, and developmental trajectories in young males with Fragile X syndrome. Journal of Autism and Developmental Disorders, 31(2), 165–174.

    PubMed  Google Scholar 

  • Bakker, C. E., Verheij, C., Willemsen, R., Vanderhelm, R., Oerlemans, F., Vermey, M., et al. (1994). FMR1 knockout mice: a model to study fragile X mental retardation. Cell, 78(1), 23–33.

    Google Scholar 

  • Banerjee, P., Grange, D. K., Steiner, R. D., & White, D. A. (2011). Executive strategic processing during verbal fluency performance in children with phenylketonuria. Child Neuropsychology, 17(2), 105–117.

    PubMed  Google Scholar 

  • Bennetto, L., Pennington, B. F., Porter, D., Taylor, A. K., & Hagerman, R. J. (2001). Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology, 15(2), 290–299.

    PubMed  Google Scholar 

  • Billuart, P., Bienvenu, T., Ronce, N., des Portes, V., Vinet, M. C., Zemni, R., et al. (1998). Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature, 392(6679), 923–926.

    PubMed  Google Scholar 

  • Campbell, L. E., Azuma, R., Ambery, F., Stevens, A., Smith, A., Morris, R. G., et al. (2010). Executive functions and memory abilities in children with 22q11.2 deletion syndrome. The Australian and New Zealand Journal of Psychiatry, 44(4), 364–71.

    PubMed  Google Scholar 

  • Campistol, J., Gassió, R., Artuch, R., & Vilaseca, M. A. (2011). Neurocognitive function in mild hyperphenylalaninemia. Developmental Medicine & Child Neurology, 53(5), 405–408.

    Google Scholar 

  • Carlier, M., & Ayoun, C. (2007). Déficiences intellectuelles et intégration sociale. Wavre: Mardaga.

    Google Scholar 

  • Carlier, M., Desplanches, A. G., Philip, N., Stefanini, S., Vicari, S., Volterra, V., et al. (2011). Laterality Preference and Cognition: Cross–Syndrome Comparison of Patients with Trisomy 21 (Down), del7q11.23 (Williams–Beuren) and del22q11.2 (DiGeorge or Velo–Cardio–Facial) syndromes (2011). Behavior Genetics, 41(3), 413–422.

    PubMed  Google Scholar 

  • Chabert, C., Jamon, M., Cherfouh, A., Duquenne, V., Smith, D. J., Rubin, E., et al. (2004). Functional analysis of genes implicated in Down syndrome: 1. Cognitive abilities in mice transpolygenic for Down syndrome chromosomal region-1 (DCR-1). Behavior Genetics, 34(6), 559–569.

    PubMed  Google Scholar 

  • Chabrol, B., Girard, N., N’Guyen, K., Gérard, A., Carlier, M., Villard, L., et al. (2005). Delineation of the clinical phenotype associated with OPHN–1 mutations based on the clinical and neuropsychological evaluation of three families. American Journal of Medical Genetics. Part A, 138(4), 314–317.

    PubMed  Google Scholar 

  • Chapman, R. S., & Hesketh, L. J. (2000). Behavioral phenotype of individuals with Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 6(2), 84–95.

    PubMed  Google Scholar 

  • Chen, L., Bao, S., & Thompson, R. F. (1999). Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice. Behavioral Neuroscience, 113(1), 204–10.

    PubMed  Google Scholar 

  • Chiriboga, C. A. (2003). Fetal alcohol and drug effects. Neurologist, 9(6), 267–279.

    PubMed  Google Scholar 

  • Chudley, A. E., Conry, J., Cook, J. L., Loock, C., Rosales, T., LeBlanc, N., et al. (2005). Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. Canadian Medical Association Journal Journal de l’association médicale canadienne, 172(5 Suppl), S1–S21.

    Google Scholar 

  • Cornish, K., Turk, J., & Hagerman, R. (2008). The fragile X continuum: New advances and perspectives. Journal of Intellectual Disability Research, 52(6), 469–482.

    PubMed  Google Scholar 

  • Courtine, G., Bunge, M. B., Fawcet, J. W., Grossman, R. G., Kaas, J. H., Lemon, R., et al. (2007). Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nature Medicine, 13(5), 561–566.

    PubMed  Google Scholar 

  • Couzens, D. Cuskelly, M., & Haynes, M. (2011). Cognitive development and Down syndrome: Age-related change on the Stanford–Binet test (Fourth Edition). American Journal of Intellectual Disability Deficiency, 116(3), 181–204.

    Google Scholar 

  • Crawford, D. C., Acuña, J. M., & Sherman, S. L. (2001). FMR1 and the fragileX syndrome: human genome epidemiology review. Genetics in medicine: official journal of the American College of Medical Genetics, 3(5), 359–371.

    Google Scholar 

  • Czarnetzki, R., Blin, N., & Pusch, C. M. (2003). Down’syndrome in ancient Europe. The Lancet, 362(9388), 1000.

    Google Scholar 

  • De Brouwer, A. P., Yntema, H. G., Kleefstra, T., Lugtenberg, D., Oudakker, A. R., de Vries, B. B., et al. (2007). Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Human Mutation, 28(2), 207–208.

    PubMed  Google Scholar 

  • De Rubeis, S., & Bagni, C. (2011). Regulation of molecular pathways in the Fragile X Syndrome: Insights into Autism Spectrum Disorders. Journal of Neurodevelopmental Disorders, 3(3), 257–269.

    PubMed  Google Scholar 

  • De Rubeis, S., Fernández, E., Buzzi, A., Di Marino, D., & Bagni, C. (2012). Molecular and cellular aspects of mental retardation in the Fragile X syndrome: From gene mutation/s to spine dysmorphogenesis. Advances in Experimental Medicine and Biology, 970, 517–51.

    PubMed  Google Scholar 

  • De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., et al. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science, 300(5628), 2055.

    PubMed  Google Scholar 

  • De Smedt, B., Devriendt, K., Fryns, J.–P., Vogels, A., Gewillig, M., & Swillen, A. (2007). Intellectual abilities in a large sample of children with velo-cardio-facial syndrome: An update. Journal of Intellectual Disability Research, 51(9), 666–670.

    PubMed  Google Scholar 

  • De Smedt, B., Swillen, A., Verschaffel, L., & Ghesquière, P. (2009). Mathematical learning disabilities in children with 22q11.2 deletion syndrome: a review. Developmental Disabilities Research Reviews, 15(1), 4–10.

    PubMed  Google Scholar 

  • de Vries, P. J. (2010). Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics, 7(3), 275–282.

    Google Scholar 

  • de Vries, B. B., White, S. M., Knight, S. J., Regan, R., Homfray, T., Young, I. D. et al. (2001). Clinical studies on submicroscopic subtelomeric rearrangements: A checklist. Journal of Medical Genetics, 38(3), 145–150.

    PubMed  Google Scholar 

  • de Vries, B. B., Winter, R., Schinzel, A., & van, R. avenswaaij–A. rts (2003). Telomeres: A diagnosis at the end of chromosomes. Journal of Medical Genetics, 40(6), 385–398.

    PubMed  Google Scholar 

  • Delabar, J.-M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J.-L., Prieur, M., Noel, B., & Sinet, P.-M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. European Journal of Human Genetics, 1(2), 114–124.

    PubMed  Google Scholar 

  • Delrieu, J., Ousset, P. J., Caillaud, C., & Vellas, B. (2012). Clinical trials in Alzheimer’s disease’: Immunotherapy approaches. Journal of Neurochemistry, 120(Suppl 1), 186–193.

    PubMed  Google Scholar 

  • DISTAT Department of International Economic and Social Affairs Statistical Office. (1990). Statistics on special population groups, Series Y, No 4 Disability Statistics Compendium. United Nations. http://unstats.un.org/unsd/demographic/sconcerns/disability/. Accessed 30 Jan 2012.

  • DeRoche, K., & Welsh, M. (2008). Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: Intelligence and executive function. Developmental Neuropsychology, 33(4), 474–504.

    PubMed  Google Scholar 

  • Eckert, M. A., Galaburda, A. M., Mills, D. L., Bellugi, U., Korenberg, J. R., & Reiss, A. L. (2006). The neurobiology of Williams syndrome: Cascading influences of visual system impairment? Cellular and Molecular Life Science, 63(16), 1867–1875.

    Google Scholar 

  • Edgin, J. O., Mason, G. M., Allman, M. J., Capone, G. T., Deleon, I., Maslen, C., et al. (2010). Development and validation of the Arizona cognitive test battery for Down syndrome. Journal of Neurodevelopmental Disorders, 2(3), 149–164.

    PubMed  Google Scholar 

  • Enea–Drapeau, C., Carlier, M., & Huguet, P. (2012) Tracking subtle stereotypes of children with Trisomy 21: From facial-feature-based to implicit stereotyping. PLoS ONE, 7(4), e34369. doi:10.1371/journal.pone.0034369.

    Google Scholar 

  • Fisch, G. S. (1997). Longitudinal assessment of cognitive behavioral deficits produced by the Fragile-X mutation. International Review of Research in Mental Retardation, 21, 221–247.

    Google Scholar 

  • Fisch, G. S. (2011). Mental retardation or intellectual disability? Time for a change. American Journal of Medical Genetics, 155A(12), 2907–2908.

    Google Scholar 

  • Fisch, G. S., Simenson, R. J., Tarleton, J., Chalifoux, M., Holden, J. A., Carpenter, N., et al. (1996). Longitudinal study of cognitive abilities and adaptive behavior levels in Fragile X males. American Journal of Medical Genetics, 64, 356–361.

    PubMed  Google Scholar 

  • Fisch, G. S., Simensen, R. J., & Schroer, R. J. (2002). Longitudinal changes in cognitive and adaptive behavior scores in children and adolescents with the Fragile X mutation or autism. Journal of Autism and Developmental Disorders, 32(2), 107–114.

    PubMed  Google Scholar 

  • Foti, F., Menghini, D., Petrosini, L., Valerio, G., Crinò, A., Vicari, S., et al. (2011). Spatial competences in Prader-Willi syndrome: A radial arm maze study. Behavior Genetics, 41(3), 445–456.

    PubMed  Google Scholar 

  • Fuchs, D., Burnside, L., Marchenski, S., Mudry, A. (2007). Children with disabilities involved with the child welfare system in Manitoba: Current and future challenges. In I. Brown, F. Chaze, D. Fuchs, J. Lafrance, S. McKay, & S. Thomas Prokop (Eds.), Putting a human face on child welfare: Voices from the Prairies (pp. 127–145). Prairie Child Welfare Consortium www.uregina.ca/spr/prairechild/index.html/. Centre of Excellence for Child Welfare www.cecw–cepb.ca.

  • Gallagher, A., & Hallahan, B. (2012). Fragile X-associated disorders: A clinical overview. Journal of Neurology, 259(3), 401–413.

    PubMed  Google Scholar 

  • Gécz, J., Shoubridge, C., & Corbett, M. (2009). The genetic landscape of intellectual disability arising from chromosome X. Trends in Genetics, 25(7), 309–316.

    Google Scholar 

  • Giovannini, M., Verduci, E., Salvatici, E., Paci, S., & Riva, E. (2012). Phenylketonuria: nutritional advances and challenges. Nutrition & Metabolism (London), 9(1), 7.

    Google Scholar 

  • Godler, D. E., Slater, H. R., Bui, Q. M., Storey, E., Ono, M. Y., Gehling, F., et al. (2012). Fragile X mental retardation 1 (FMR1) intron 1 methylation in blood predicts verbal cognitive impairment in female carriers of expanded FMR1 alleles: Evidence from a pilot study. Clinical Chemistry, 58(3), 590–598.

    PubMed  Google Scholar 

  • Goodrich–Hunsaker, N. J., Wong, L. M., McLennan, Y., Srivastava, S., Tassone, F., Harvey, D., et al. (2011). Young adult female fragile X premutation carriers show age-and genetically-modulated cognitive impairments. Brain and Cognition, 75(3), 255–260.

    PubMed  Google Scholar 

  • Guimera, J., Casas, C., Pucharcos, C., Solans, A., Domenech, A., Planas, A. M., et al. (1996). A human homologue of Drosophila minibrain (MBN) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Human Molecular Genetics, 5(9), 1305–1310.

    PubMed  Google Scholar 

  • Hagerman, P. J., & Hagerman, R. J. (2007). Fragile X associated tremor/ataxia syndrome—an older face of the fragile X gene. Nature Clinical Practice Neurology, 3(2), 107–112.

    PubMed  Google Scholar 

  • Hagerman, R., Kemper, M., & Hudson, M. (1985). Learning disabilities and attentional problems in boys with the fragile X syndrome. American Journal of Diseases of Children, 139(7), 674–678.

    PubMed  Google Scholar 

  • Hall, S. S., Burns, D. D., Lightbody, A. A., & Reiss, A. L. (2008). Longitudinal changes in intellectual development in children with Fragile X syndrome. Journal of Abnormal Child Psychology, 36(6), 927–939.

    PubMed  Google Scholar 

  • Hall, S. S., Lightbody, A. A., Hirt, M., Rezvani, A., & Reiss, A. L. (2010). Autism in fragile X syndrome: a category mistake? Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 921–933.

    PubMed  Google Scholar 

  • Hansen, K. F., Sakamoto, K., Wayman, G. A., Impey, S., & Obrietan, K. (2010). Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One, 5(11):e15497, doi:10.1371/journal.pone.0015497.

    Google Scholar 

  • Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., et al. (2000). The DNA sequence of human chromosome 21. Nature, 405(6784), 311–319.

    PubMed  Google Scholar 

  • Heisenberg, M., Borst, A., Wagner, S., & Byers, M. D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2(1), 1–30.

    PubMed  Google Scholar 

  • Hessl, D., Nguyen, D. V., Green, C., Chavez, A., Tassone, F., Hagerman, R. J., et al. (2009). A solution to limitations of cognitive testing in children with intellectual disabilities: the case of fragile X syndrome. Journal of Neurodevelopmental Disorders, 1(1), 33–45.

    PubMed  Google Scholar 

  • Hooper, M., Hardy, K., Handyside, A., Hunter, S., & Monk, M. (1987). HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature, 326(6110), 295–298.

    Google Scholar 

  • Human Resources and Skills Development Canada. (2011). Disability in Canada: A 2006 profile. http://www.hrsdc.gc.ca/eng/disability_issues/reports/disability_profile/2011/page01.shtml. Accessed Mar 2012.

  • Hunter, J. E., Sherman, S., Grigsby, J., Kogan, C., & Cornish, K. (2012). Capturing the fragile X premutation phenotypes: A collaborative effort across multiple cohorts. Neuropsychology, 26(2), 156–164.

    PubMed  Google Scholar 

  • Itard, J. (1801). Mémoire sur les premiers développements de Victor de l’Aveyron. Paris http://dx.doi.org/doi:10.1522/cla.itj.rap. English traduction (1802) An historical account of the discovery and Education of a Savage Man, or of the first developments, physical and moral, of the Young sauvage caught in the woods near Aveyron, in the year 1798. London: Richard Phillips.

  • Ivanovic, D. M., Leiva, B. P., Perez, H. T., Inzunza, N. B., Almagià, A. F., Toro, T. D., et al. (2000). Long-term effects of severe undernutrition during the first year of life on brain development and learning in Chilean high-school graduates. Nutrition, 16(11–12), 1056–1063.

    PubMed  Google Scholar 

  • Jacquemont, S., Hagerman, R. J., Hagerman, P. J., & Leehey, M. A. (2007). Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: Two faces of FMR1. Lancet Neurology, 6(1), 45–55.

    PubMed  Google Scholar 

  • Kahlem, P. (2006). Gene dosage effect on chromosome 21 transcriptome in trisomy 21: Implication in Down’s syndrome cognitive disorders. Behavior Genetics, 36(3), 416–428.

    PubMed  Google Scholar 

  • Kahlem, P., Sultan, M., Herwig, R., Steinfath, M., Balzereit, D., Eppens, B., et al. (2004). Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of Down syndrome. Genome Research, 14(7), 1258–1267.

    PubMed  Google Scholar 

  • Kayaalp, E., Treacy, E., Waters, P. J., Byck, S., Nowacki, P., & Scriver, C. R. (1997). Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: A metanalysis of genotype-phenotype correlations. American Journal of Human Genetics, 61(6), 1309–1317.

    PubMed  Google Scholar 

  • Koolen, D. A., Nillesen, W. M., Versteeg, M. H., Merkx, G. F., Knoers, N. V., Kets, M., et al. (2004). Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). Journal of Medical Genetics, 41(12), 892–899.

    PubMed  Google Scholar 

  • Korenberg, J. R., Chen, X. N., Schipper, R., Sun, Z., Gonsky, R., Gerwehr, S., et al. (1994). Down syndrome phenotypes: the consequences of chromosomal imbalance. Proceedings of the National Academy of Science of the United States of America, 91(11), 4997–5001.

    Google Scholar 

  • Koukoui, S. D., & Chaudhuri, A. (2007). Neuroanatomical, molecular genetic, and behavioral correlates of fragile X syndrome. Brain Research Reviews, 53(1), 27–38.

    PubMed  Google Scholar 

  • Kozomara, A., & Griffiths-Jones, S. (2011). miRbase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39(Database issue), D152–D157.

    Google Scholar 

  • Kuehn, M. R., Bradley, A., Robertson, E. J., & Evans, M. J. (1987). A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature, 326(6110), 295–298.

    PubMed  Google Scholar 

  • Lachiewicz, A. M., & Dawson, D. V. (1994). Behavior problems of young girls Fragile X syndrome: Factor scores on the Conners’ parent’s questionnaire. American Journal of Medical Genetics, 51(4), 364–369.

    PubMed  Google Scholar 

  • Lejeune, J., Turpin, B., & Gauthier, M. (1959). Le mongolisme, premier exemple d’aberration autosomique humaine. Annales de Génétique, 1(2), 41–49.

    Google Scholar 

  • Leonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Review, 8(3), 117–34.

    Google Scholar 

  • Lightbody, A. A., & Reiss, A. L. (2009). Gene, brain, and behavior relationships in fragile X syndrome: Evidence from neuroimaging studies. Developmental Disabilities Research Review, 15(4), 343–352.

    Google Scholar 

  • Lightbody, A. A., Hall, S. S., & Reiss, A. L. (2006). Chronological age, but not FMRP levels, predicts neuropsychological performance in girls with fragile X syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(5), 468–472.

    Google Scholar 

  • Lombard, Z., Tiffin, N., Hofmann, O., Bajic, V. B., Hide, W., & Ramsay, M. (2007). Computational selection and prioritization of candidate genes for fetal alcohol syndrome. BMC Genomics, 8, 389.

    PubMed  Google Scholar 

  • Lyle, R., Gehrig, C., Neergaard-Henrichsen, C., Deutsch, S., & Antonarakis, S. E. (2004). Gene expression from the aneuploid chromosome in a trisomy mouse model of Down syndrome. Genome Research, 14(7), 1268–1274.

    Google Scholar 

  • Manolakos, E., Vetro, A., Kefalas, K., Rapti, S. M., Louizou, E., Garas, A., et al. (2010). The use of array-CGH in a cohort of Greek children with developmental delay. Molecular Cytogenetics, 3, 22.

    PubMed  Google Scholar 

  • Mason, R. P., & Giorgini, F. (2011). Modeling Huntington disease in yeast: Perspectives and future directions. Prion, 5(4) (Epub ahead of print).

    Google Scholar 

  • May, P. A., Fiorentino, D., Coriale, G., Kalberg, W. O., Hoyme, H. E., Aragón, A. S., et al. (2011). Prevalence of children with severe fetal alcohol spectrum disorders in communities near Rome, Italy: New estimated rates are higher than previous estimates. International Journal of Environmental Research and Public Health, 8(6), 2331–2351.

    PubMed  Google Scholar 

  • McDermott, S., Durkin, M. S., Schupf, N., & Stein, Z. A. (2007). Epidemiology and etiology in mental retardation. In J. W. Jacobson, J. A. Mulick, & J. Rojahn (Eds.), Handbook of intellectual and developmental disabilities (pp. 3–40). New York: Springer.

    Google Scholar 

  • McDuffie, A., & Abbeduto, L. (2009). Language disorders in children with mental retardation of genetic origin: Down syndrome, fragile X and Williams syndrome. In R. G. Schwartz (Ed.), Handbook of child language disorders (pp. 44–66). New York: Psychology Press.

    Google Scholar 

  • McKinney, W. T. (1977). Biobehavioral models of depression in monkeys. In E. Usdin & I. Hanin (Eds.), Animal models in psychiatry and neurology (pp. 117–126). Oxford: Pergamon Press.

    Google Scholar 

  • McKusick, V. A. (2007). Mendelian Inheritance in Man and its online version, OMIM. American Journal of Human Genetics, 80(4), 588–604.

    PubMed  Google Scholar 

  • Menghini, D., Costanzo, F., & Vicari, S. (2011a). Relationship between brain and cognitive processes in persons with Down syndrome. Behavior Genetics, 41(3), 381–393.

    Google Scholar 

  • Menghini, D., Di Paola, M., Federico, F., Vicari, S., Petrosini, L., Caltagirone, C., et al. (2011b). Relationship between brain abnormalities and cognitive profile in Williams syndrome. Behavior Genetics, 41(3), 394–402.

    Google Scholar 

  • Meyer-Lindenberg, A., Mervis, C. B., & Faith Berman, K. (2006). Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behavior. Nature Reviews Neuroscience, 7(5), 367–379.

    Google Scholar 

  • Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445–468.

    PubMed  Google Scholar 

  • Möller, H. E., Weglage, J., Bick, U., Wiedermann, D., Feldmann, R., & Ullrich, K. (2003). Brain imaging and proton magnetic resonance spectroscopy in patients with phenylketonuria. Pediatrics, 112(6 Pt 2), 1580-, 1583.

    Google Scholar 

  • Morris, C. A., & Mervis, C. B. (2000). Williams syndrome and related disorders. Annual Review of Genomics and Human Genetics, 1, 461–484.

    PubMed  Google Scholar 

  • Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56(10), 940–945.

    PubMed  Google Scholar 

  • Musso, M. W., Barker, A. A., Proto, D. A., & Gouvier, W. D. (2012). College students’ conceptualizations of deficits involved in mild intellectual disability. Research in Developmental Disability, 33, 224–228.

    Google Scholar 

  • Mwaniki, M. K., Atieno, M., Lawn, J. E., & Newton, C. R. (2012). Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet, 379(9814), 445–452.

    PubMed  Google Scholar 

  • Naidu, S., Kaufmann, W. E., Abrams, M. T., Pearlson, G. D.., Lanham, D. C., Fredericksen, K. A., et al. (2001). Neuroimaging studies in Rett syndrome. Brain Development, 23(Suppl 1), S62–S71.

    Google Scholar 

  • Najmabadi, H., Hu, H., Garshasbi, M., Zemojtel, T., Abedini, S. S., Chen, W., et al. (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367), 57–63.

    PubMed  Google Scholar 

  • Oberlé, I., Rousseau, F., Heitz, D., Kretz, C., Devys, D., Hanauer, A., Boué, J., Bertheas, M. F., & Mandel, J. L. (1991). Instability of a 550-base pair DNA segment and abnormal methylation in Fragile X syndrome. Science, 252(5010), 1097–1102.

    PubMed  Google Scholar 

  • Okasha, A. (1999). Mental health in the Middle East: An Egyptian perspective. Clinical Psychology Review, 19(8), 917–933.

    PubMed  Google Scholar 

  • OMIM Online Medelian Inheritance in Man Johns Hopkins University. http://www.ncbi.nlm.nih.gov.gate1.inist.fr/omim.

  • Osorio, F. G., Navarro, C. L., Cadiñanos, J., López-Mejàa, I. C., Quirós, P. M., Bartoli. C., et al. (2011). Splicing-directed therapy in a new mouse model of human accelerated aging. Science Translational Medicine, 3(106), 106ra107.

    Google Scholar 

  • Participation and Activity Limitation Survey, (P. A. L. S.). (2006). Human resources and skills development Canada. http://www.statcan.gc.ca/. Accessed 6 Mar 2012.

  • Philip, N., & Bassett, A. (2011). Cognitive, behavioral and psychiatric phenotype in 22q11.2 deletion syndrome. Behavior Genetics, 41(3), 403–412.

    PubMed  Google Scholar 

  • Popp, M. S., Schulze, B., Granzow, M., Keller, M., Holtgreve–Grez, H., Schoell, B., et al. (2002). Study of 30 patients with unexplained developmental delay and dysmorphic features or congenital abnormalities using conventional cytogenetics and multiplex FISH telomere (M–TEL) integrity assay. Human Genetics, 111(1), 31–39.

    PubMed  Google Scholar 

  • Prick, B. W., Hop, W. C. J., & Duvekot, J. J. (2012). Maternal phenylketonuria and hyperphenylalaninemia in pregnancy: Pregnancy complications and neonatal sequelae in untreated and treated pregnancies. The American Journal of Clinical Nutrition, 95(2), 374–382.

    PubMed  Google Scholar 

  • Raux, G., Bumsel, E., Hecketsweiler, B., van Amelsvoort, T., Zinkstok, J., Manouvrier-Hanu, S., et al. (2007). Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Human Molecular Genetics, 16(1), 83–91.

    PubMed  Google Scholar 

  • Reiss, A., L., & Dant, C. C. (2003). The behavioral neurogenetics of fragile X syndrome: Analyzing gene-brain-behavior relationships in child developmental psychopathologies. Development and Psychopathology, 15(4), 927–968.

    PubMed  Google Scholar 

  • Reymond, A., Marigo, V., Yaylaoglu, M. B., Leoni, A., Ucla, C., Scamuffa, N., et al. (2002). Human chromosome 21 gene expression atlas in the mouse. Nature, 420(6915), 582–586.

    PubMed  Google Scholar 

  • Robbins, T. W., & Sahakian, B. J. (1979). ‘‘Paradoxical’’ effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioral pharmacology. Neuropharmacology, 18(12), 931–950.

    PubMed  Google Scholar 

  • Ropers, H. H. (2008). Genetics of intellectual disability. Current Opinion in Genetics & Development, 18(3), 241–250.

    Google Scholar 

  • Roubertoux, P. (2004). Existe–t–il des gènes du comportement. Paris: Odile Jacob.

    Google Scholar 

  • Roubertoux, M., & Carlier, M. (2007). From DNA to the mind. EMBO Reports, 8(Science & Society, Special Issue), S7–S11.

    Google Scholar 

  • Roubertoux, P. L., & Carlier, M. (2009). Neurogenetic analysis and cognitive functions in Trisomy 21. In Y. K. Kim (Ed.), Handbook of behavior genetics (pp. 175–185). New York: Springer.

    Google Scholar 

  • Roubertoux, P. L., & Carlier, M. (2011). Good use and misuse of “genetic determinism”. Journal of Physiology-Paris, 105, 190–194.

    Google Scholar 

  • Roubertoux, P. L., & Kerdelhué, B. (2006). Trisomy 21: From chromosome to mental retardation. Behavior Genetics, 36(3), 346–354.

    PubMed  Google Scholar 

  • Rutter, M., Sonuga-Barke, E. J., & Castle, J. (2010). I. Investigating the impact of early institutional deprivation on development: Background and research strategy of the English and Romanian adoptees (ERA) study. Monographs of the Society for Research in Child Development, 75(1), 1–20.

    PubMed  Google Scholar 

  • Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887.

    PubMed  Google Scholar 

  • Saywell, V., Viola, A., Confort-Gouny, S., Le Fur, Y., Villard, L., & Cozzone, P. J. (2006). Brain magnetic resonance study of MECP2 deletion effects on anatomy and metabolism. Biochemical and Biophysical Research Communications, 340(3), 776–783.

    PubMed  Google Scholar 

  • Schaevitz, L. R., Moriuchi, J. M., Nag, N., Mellot, T. J., & Berger-Sweeney, J. (2010). Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiology & Behavior, 100(3), 255–263.

    Google Scholar 

  • Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400(6740), 173–717.

    PubMed  Google Scholar 

  • Schuurs-Hoeijmakers, J. H., Hehir-Kwa, J. Y., Pfundt, R., van Bon, B. W., de Leeuw, N., Kleefstra, T., et al. (2011). Homozygosity mapping in outbred families with mental retardation. European Journal of Human Genetics, 19(5), 597–601.

    PubMed  Google Scholar 

  • Seguin, E. (1846). Traitement moral, hygiène et éducation des idiots et des autres enfants arriérés. Paris: Baillère. http://gallica.bnf.fr/Catalogue/noticesInd/FRBNF31346191.htm.

  • Seltzer, M. M., Barker, E. T., Greenberg, J. S., Hong, J., Coe, C., & Almeida, D. (2011). Differential sensitivity to life stress in FMR1 premutation carrier mothers of children with fragile X syndrome. Health Psychology, Dec 12. (Epub ahead of print)

    Google Scholar 

  • Sérégaza, Z., Roubertoux, P. L., Jamon, M., & Soumireu-Mourat, B. (2006). Mouse models of cognitive disorders in trisomy 21: A review. Behavior Genetics, 36(3), 387–404.

    Google Scholar 

  • Sharman, R., Sullivan, K., Young, R., & McGill, J. (2010). A preliminary investigation of the role of the phenylalanine: Tyrosine ratio in children with early and continuously treated phenylketonuria: Toward identification of ‘safe’ levels. Developmental Neuropsychology, 35(1), 57–65.

    PubMed  Google Scholar 

  • Smith, M. (2006). Mental retardation and developmental delay. Genetic and epigenetic factors. Oxford: University Press.

    Google Scholar 

  • Smith, D. J., Zhu, Y., Zhang, J., Cheng, J. F., & Rubin, E. M. (1995). Construction of a panel of transgenic mice containing a contiguous 2 Mb set of YAC/P1 clones from human chromosome. Genomics, 27(3), 425–434.

    PubMed  Google Scholar 

  • Smith, D. J., Stevens, M. E., Sudanagunta, S. P., Bronson, R. T., Makhinson, M., Watabe, A. M., et al. (1997). Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nature Genetics, 16(1), 28–36.

    PubMed  Google Scholar 

  • Song, W. J., Sternberg, L. R., Kasten-Sportes, C., Keuren, M. L., Chung, S. H., Slack, A. C., et al. (1996). Isolation of human and murine homologues of the Drosophila minibrain gene: Human homologue maps to 21q22.2 in the Down syndrome ‘‘critical region’’. Genomics, 38(3), 331–339.

    PubMed  Google Scholar 

  • Stratton, K., Howe, C., & Battaglia, F. (1996). Fetal alcohol syndrome. Diagnostic, epidemiology, prevention, and treatment. Washington DC: New York Academy Press.

    Google Scholar 

  • Strømme, P., Bjørnstad, P. G., & Ramstad, K. (2002). Prevalence estimation of Williams syndrome. Journal of Child Neurology, 17(2), 269–271.

    PubMed  Google Scholar 

  • Schwartz, C. E., Dean, J., Howard-Peebles, P. N., Bugge, M., Mikkelsen, M., Tommerup, N., et al. (1994). Obstetrical and gynecological complications in fragile X carriers: a multicenter study. American Journal of Medical Genetics, 51(4), 400–402.

    PubMed  Google Scholar 

  • Tauber, E., Miller-Fleming, L., Mason, R. P., Kwan, W., Clapp, J., Butler, J. N., et al. (2011). Functional gene expression profiling in yeast implicates translational dysfunction in mutant huntingtin toxicity. The Journal of Biological Chemistry, 286(1), 410–419.

    PubMed  Google Scholar 

  • Taylor, E., & Rogers, J. W. (2005). Practitioner review: Early adversity and developmental disorders. Journal of Child Psychology and Psychiatry, 46(5), 451–467.

    PubMed  Google Scholar 

  • Tejedor, F., Zhu, X. R., Kaltenbach, E., Ackermann, K., Baumann, A., Canal, I., et al. (1995). Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron, 14(2), 287–301.

    PubMed  Google Scholar 

  • Tenenbaum, A., Hertz, P., Dor, T., Castiel, Y., Sapir, A., & Wexler, I. D. (2011). Fetal alcohol spectrum disorder in Israel: Increased prevalence in an at-risk population. The Israel Medical Association Journal: IMAJ, 13(12), 725–729.

    PubMed  Google Scholar 

  • Thomas, M. S. C., Annaz, D., Ansari, D., Scerif, G., Jarrold, C., & Karmiloff-Smith, A. (2009). Using developmental trajectories to understand developmental disorders. Journal of Speech, Language, and Hearing Research, 52(2), 336–358.

    PubMed  Google Scholar 

  • Thompson, L., & Gillberg, C. (2012). Behavioral problems from perinatal and neonatal insults. The Lancet, 379(9814), 392–393.

    Google Scholar 

  • Tordjman, S., Drapier, D., Bonnot, O., Graignic, R., Fortes, S., Cohen, D., et al. (2007). Animal models relevant to schizophrenia and autism: validity and limitations. Behavior Genetics, 37(1), 61–78.

    PubMed  Google Scholar 

  • Tordjman, S., Anderson, G. M., Botbol, M., Toutain, A., Sarda, P., Carlier, M., et al. (2012) Autistic disorder in patients with Williams-Beuren syndrome: A reconsideration of the Williams-Beuren syndrome phenotype. PLoS ONE, 7(3), e30778. doi:10.1371/journal.pone.0030778.

    Google Scholar 

  • Turner, G., & Turner, B. (1074). X-linked mental retardation. Journal of Medical Genetics, 11, 109–113.

    Google Scholar 

  • United Nations/Nations Unies (2011). 2009–2011 DemographicyearbookAnnuaire démographique Sixty-first issus/Soixante et unième édition. United Nations/ Nations Unies. Economic & Social Affairs. http://unstats.un.org/unsd/demographic/sconcerns/disability/. Accessed 30 Jan 2012.

  • Viau, K. S., Wengreen, H. J., Ernst, S. L., Cantor, N. L., Furtado, L. V., & Longo, N. (2011). Correlation of age-specific phenylalanine levels with intellectual outcome in patients with phenylketonuria. Journal of Inherited Metabolic Disease, 34(4), 963–971.

    PubMed  Google Scholar 

  • Vicari, S. (2006). Motor development and neuropsychological patterns in persons with Down syndrome. Behavior Genetics, 36(3), 355–364.

    PubMed  Google Scholar 

  • Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries P., et al. (2010). A de novo paradigm for mental retardation. Nature Genetics, 42(12), 1109–1112.

    PubMed  Google Scholar 

  • Waisbren, S. E., Noel, K., Fahrbach, K., Cella, C., Frame, D., Dorenbaum, A., et al. (2007). Phenylalanine blood levels and clinical outcomes in phenylketonuria: A systematic literature review and meta-analysis. Molecular Genetics and Metabolism, 92(1–2), 63–70.

    PubMed  Google Scholar 

  • Walter, E., Mazaika, P. K., & Reiss, A. L. (2009). Insights into brain development from neurogenetic syndromes: Evidence from fragile X syndrome, Williams syndrome, Turner syndrome and velo-cardio-facial syndrome. Neuroscience, 164(1), 257–271.

    PubMed  Google Scholar 

  • Wang, R., Bray, S. M., & Warren, S. (2012). New perspectives on the biology of fragile X syndrome. Current Opinion in genetics & Development, 22, 256–263.

    Google Scholar 

  • Warren, S. F., Brady, N.C. (2007). The role of maternal responsivity in the development of children with intellectual disabilities. Mental Retardation & Developmental Disabilities Research Reviews, 13(4), 330–338.

    Google Scholar 

  • Warren, K. R., & Hewitt, B. G. (2009). Fetal alcohol spectrum disorders: When science, medicine, public policy, and laws collide. Developmental Disabilities Research Reviews, 15, 170–175.

    PubMed  Google Scholar 

  • Warren, K. R., & Li, T. K. (2005). Genetic polymorphisms: Impact on the risk of fetal alcohol spectrum disorder. Birth Defects Research Part A Clinical and Molecular Teratology, 73(4), 195–203.

    Google Scholar 

  • Warren, S. F., Brady, N., Sterling, A., Fleming, K., & Marquis, J. (2010). Maternal responsivity predicts language development in young children with Fragile X syndrome. American Journal on Intellectual and Developmental Disabilities, 115(1), 54–75.

    PubMed  Google Scholar 

  • Watanabe, H., Fujiyama, A., Hattori, M., Taylor, T. D., Toyoda, A., Kuroki, Y., et al. (2004). DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature, 429(6990), 382–388.

    PubMed  Google Scholar 

  • Williams, R. A., Mamotte, C. D., & Burnett, J. R. (2008). Phenylketonuria: an inborn error of phenylalanine metabolism. The Clinical Biochemist Reviews, 29(1), 31–41.

    Google Scholar 

  • WHO (2001). World health assembly resolution. www.who.int/classifications/icf/en/. Accessed 18 April 2007

  • World Health Organization (WHO). (2002). Towards a common language for functioning, disability and health, ICF. www.designfor21st. org/documents/who_icf_2002.pdf. Accessed 18 April 2007

  • Wu, C. L., & Melton, D. W. (1993). Production of a model for Lesch–Nyhan syndrome in Hypoxanthine phosphoribosyltransferase-deficient mice. Nature Genetics, 3(3), 235–240.

    PubMed  Google Scholar 

  • Youngstrom, E. A., Glutting, J. J., & Watkins, M. W. (2003). Stanford–Binet intelligence scale: Fourth Edition (SB4): Evaluating the empirical bases for interpretations. In C. R. Reynolds & R. W. Kamphaus (Eds.), Handbook of psychological & educational assessment of children (2nd ed., pp. 217–242). New York: Guilford Press.

    Google Scholar 

  • Yu, S., Pritchard, M., Kremer, E., Lynch, M., Nancarrow, J., Baker, E., et al. (1991). Fragile X Genotype characterized by an unstable region of DNA. Science, 252(5010), 1179–1181.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Carlier Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carlier, M., Roubertoux, P. (2014). Genetic and Environmental Influences on Intellectual Disability in Childhood. In: Finkel, D., Reynolds, C. (eds) Behavior Genetics of Cognition Across the Lifespan. Advances in Behavior Genetics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7447-0_3

Download citation

Publish with us

Policies and ethics