Advertisement

Cognitive Abilities in Childhood and Adolescence

  • Sally J. WadsworthEmail author
  • Robin P. Corley
  • John C. DeFries
Chapter
Part of the Advances in Behavior Genetics book series (AIBG, volume 1)

Abstract

General cognitive ability is associated with important life outcomes such as educational and occupational attainment, social mobility, and even health. The study of the behavioral genetics of cognition has grown dramatically in recent years, including our understanding of the developmental etiologies of cognitive abilities and relations to achievement and later outcomes. The purpose of this first chapter is to provide an overview of the research on the genetics of cognitive abilities in childhood and adolescence. We begin with a brief introduction to the constructs of general and specific cognitive abilities, followed by a discussion of prominent theories of cognitive development, both historical and current. We then discuss state-of-the-art methods in developmental behavioral genetics and their relevance to important issues in child and adolescent cognitive development. Each method is then illustrated by its application to a recent topic in cognitive development. Based on findings from these studies, we conclude that individual differences in cognitive abilities in childhood and adolescence are substantially and increasingly heritable, due primarilly to the combined influence of many genes with relatively small effect. Additional topics include the etiological overlap between cognitive abilities and academic achievement, quantitative and molecular genetic analyses of high and low ability and achievement, and sex differences. Additional research concerning the behavioral genetics of cognition should greatly facilitate future analyses of the interplay between genetic and environmental influences, including genotype-environment correlation and interaction.

Keywords

Cognitive Ability Academic Achievement Verbal Intelligence Quotient General Cognitive Ability Shared Environmental Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by grants HD027802 and HD010333 from The Eunice Kennedy Shriver National Institute of Child Health and Human Development and by grant MH063207 from the National Institute of Mental Health.

References

  1. Ardila, A., Rosselli, M., Matute, E., & Inozemtseva, O. (2011). Gender differences in cognitive development. Dev Psychol, 47(4), 984–990. doi:10.1037/a0023819PubMedGoogle Scholar
  2. Arnold, L. E., Abikoff, H. B., Cantwell, D. P., Conners, C. K., Elliott, G., Greenhill, L. L., et al. (1997). National institute of mental health collaborative multimodal treatment study of children with ADHD (the MTA). Design challenges and choices. Archives of General Psychiatry, 54(9), 865–870.PubMedGoogle Scholar
  3. Astrom, R. L., Wadsworth, S. J., & DeFries, J. C. (2007). Etiology of the stability of reading difficulties: the longitudinal twin study of reading disabilities. Twin Research and Human Genetics, 10(3), 434–439. doi:10.1375/twin.10.3.434PubMedGoogle Scholar
  4. Astrom, R. L., Wadsworth, S. J., Olson, R. K., Willcutt, E. G., & DeFries, J. C. (2011). DeFries-Fulker analysis of longitudinal reading performance data from twin pairs ascertained for reading difficulties and from their nontwin siblings. Behav Genet, 41(5), 660–667. doi:10.1007/s 10519-011-9445-6PubMedGoogle Scholar
  5. Baker, L. A., Ho, H., & Reynolds, C. (1994). Sex differences in genetic and environmental influences for cognitive abilities. R. P. J. C. DeFries & D. W. Fulker (Ed.), Nature and nurture during middle childhood (pp. 181–200). Cambridge: Blackwell.Google Scholar
  6. Bereiter, C. (1969). The future of individual differences. Harvard Educational Review, 39, 310–318.Google Scholar
  7. Binet, A., & Simon, T. (1905). Upon the necessity of establishing a scientific diagnosis of the inferior states of intelligence. L’Annee Psychologique, 11, 163–191.Google Scholar
  8. Binet, A., & Simon, T. (1916). New methods for the diagnosis of the intellectual level of subnormals. In the development of intelligence in children. New York: Williams & Wilkins.Google Scholar
  9. Bishop, D. V. (2001). Genetic influences on language impairment and literacy problems in children: Same or different? Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(2), 189–198.Google Scholar
  10. Bishop, E. G., Cherny, S. S., Corley, R., Plomin, R., DeFries, J. C., & Hewitt, J. K. (2003). Development genetic analysis of general cognitive ability from 1 to 12 years in a sample of adoptees, biological siblings, and twins. Intelligence, 31(1), 31–49.Google Scholar
  11. Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212, 1055–1059.PubMedGoogle Scholar
  12. Brant, A. M., Haberstick, B. C., Corley, R. P. Wadsworth, S. J., DeFries, J. C., & Hewitt, J. K. (2009). The developmental etiology of high IQ. Behavior Genetics, 39(4), 393–405. doi:10.1007/s10519-009-9268-xPubMedGoogle Scholar
  13. Butcher, L. M., Davis, O. S., Craig, I. W., & Plomin, R. (2008). Genome-wide quantitative trait locus association scan of general cognitive ability using pooled DNA and 500K single nucleotide polymorphism microarrays. Genes Brain Behav, 7(4), 435–446. doi:10.1111/j.1601-183X.2007.00368.xPubMedGoogle Scholar
  14. Cardon, L. R. (1994). Specific cognitive abilities. R. P. J. C. DeFries & D. W. Fulker (Ed.), Nature and nurture during middle childhood (pp. 57–76). Oxford: Blackwell.Google Scholar
  15. Cardon, L. R., DiLalla, L. F., Plomin, R., DeFries, J. C., & Fulker, D. W. (1990). Genetic correlations between reading performance and IQ in the Colorado Adoption Project. Intelligence, 14, 245–257.Google Scholar
  16. Cardon, L. R., Fulker, D. W., DeFries, J. C., & Plomin, R. (1992a). Continuity and change in general cognitive ability from 1 to 7 Years of Age. Developmental Psychology, 28(1), 64–73.Google Scholar
  17. Cardon, L. R., Fulker, D. W., DeFries, J. C., & Plomin, R. (1992b). Multivariate genetic analysis of specific cognitive abilities in the Colorado Adoption Project at Age 7. Intelligence, 16(3–4), 383–400.Google Scholar
  18. Cardon, L. R. Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F., & DeFries, J. C. (1994). Quantitative trait locus for reading disability on chromosome 6. Science, 266, 276–279.Google Scholar
  19. Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. New York: Cambridge.Google Scholar
  20. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1–22.Google Scholar
  21. Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J. P., Cesarini, D., van der Loos, M. J. H. M., et al. (in press). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23(11), 1314–1323Google Scholar
  22. Cherny, S. S., & Cardon, L. R. (1994). General cognitive ability. J. C. DeFries, R. Plomin, & D. W. Fulker (Eds.), Nature and nurture during middle childhood (pp. 46–56). Oxford: Blackwell.Google Scholar
  23. Cherny, S. S., Fulker, D. W., & Hewitt, J. K. (1997). Cognitive development from infancy to middle childhood. R. J. S. E. L. Grigorenko (Ed.), Intelligence: Heredity and environment (pp. 463–482). New York: Cambridge University Press.Google Scholar
  24. Connolly, A. J., Nachtman, W., & Pritchett, E. M. (1976). Key Math Diagnostic Arithmetic Test. Circle Pines: American Guidance Service.Google Scholar
  25. Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry, 16(10), 996–1005. doi:10.1038/mp.2011.85PubMedGoogle Scholar
  26. Davis, O. S., Butcher, L. M., Docherty, S. J., Meaburn, E. L., Curtis, C. J., Simpson, M. A., et al. (2010). A three-stage genome-wide association study of general cognitive ability: hunting the small effects. Behav Genet, 40(6), 759–767. doi:10.1007/s10519-010-9350-4PubMedGoogle Scholar
  27. Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Hum Genet, 126(1), 215–232. doi:10.1007/s00439-009-0655-4PubMedGoogle Scholar
  28. Deary, I. J., Yang, J., Davies, G., Harris, S. E., Tenesa, A., Liewald, D., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 482(7384), 212–215. doi:10.1038/nature10781PubMedGoogle Scholar
  29. DeFries, J. C. (1985). Colorado reading project. In D. B. Gray & J. F. Kavanagh (Eds.), Biobehavioral measures of dyslexia (pp. 107–122). Parkton, MD: York Press. (Reprinted from: NOT IN FILE).Google Scholar
  30. DeFries, J. C., Filipek, P. A., Fulker, D. W., Olson, R. K., Pennington, B. F., Smith, S. D., & Wise, B. W. (1997). Colorado learning disabilities research center. Learning Disabilities: A Multidisciplinary Journal, 8, 7–19.Google Scholar
  31. DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467–473.PubMedGoogle Scholar
  32. DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellologiae: Twin Research, 37, 205–216.PubMedGoogle Scholar
  33. DeFries, J. C., Johnson, R. C., Kuse, A. R., McClearn, G. E., Polovina, J., Vandenberg, S. G., & Wilson, J. R. (1979). Familial resemblance for specific cognitive abilities. Behavior Genetics, 9(1), 23–43.PubMedGoogle Scholar
  34. DeFries, J. C., Knopik, V. S., & Wadsworth, S. J. (1999). Colorado twin study of reading disability. In D. D. Duane (Ed.), Reading and attention disorders: Neurobiological correlates (pp. 17–41). Baltimore: York Press.Google Scholar
  35. DeFries, J. C., Olson, R. K., Pennington, B. F., & Smith, S. D. (1991). Colorado reading project: Past, present, and future. Learning Disabilities: A Multidisciplinary Journal, 2, 37–46.Google Scholar
  36. DeFries, J. C., Plomin, R., & Fulker, D. W. (1994). Nature and nurture during middle childhood. Oxford: Blackwell Publishers.Google Scholar
  37. Docherty, S. J., Davis, O. S. P., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., et al. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes Brain and Behavior, 9(2), 234–247. doi:10.1111/j.1601-183X.2009.00553.xGoogle Scholar
  38. Docherty, S. J., Kovas, Y., & Plomin, R. (2011). Gene-environment interaction in the etiology of mathematical ability using SNP sets. Behavior Genetics, 41, 141–154.PubMedGoogle Scholar
  39. Doyle, A. E., Ferreira, M. A., Sklar, P. B., Lasky-Su, J., Petty, C., Fusillo, S. J., et al. (2008). Multivariate genome-wide linkage scan of neurocognitive traits and ADHD symptoms: Suggestive linkage to 3q13. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 147B(8), 1399–1411. doi:10.1002/ajmg.b.30868Google Scholar
  40. Dunn, L. M., & Markwardt, F. C. (1970). Examiner’s manual: Peabody individual achievement test. Circle Pines: American Guidance Service.Google Scholar
  41. Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., & Nadeau, J. H. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet, 11(6), 446–450. doi:10.1038/nrg2809PubMedGoogle Scholar
  42. Emde, R. N., & Hewitt, J. K. (2001). Infancy to early childhood: Genetic and environmental influences on developmental change. Oxford: Oxford University Press.Google Scholar
  43. Erlenmeyer-Kimling, L., & Jarvik, L. F. (1963). Genetics and intelligence: A review. Science, 142, 1477–1479.PubMedGoogle Scholar
  44. Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19(11), 1124–1130. doi:10.1111/j.1467-9280.2008.02213.xGoogle Scholar
  45. Friend, A., DeFries, J. C., Olson, R. K., Pennington, B. F., Harlaar, N., Byrne, B., et al. (2009). Heritability of high reading ability and its interaction with parental education. Behavior Genetics, 39(4), 427–436. doi:10.1007/s10519-009-9263-2Google Scholar
  46. Fulker, D. W., & Cherny, S. S. (1995). Genetic and environmental influences on cognition during childhood. Population Research and Policy Review, 14, 283–300.Google Scholar
  47. Fulker, D. W., Cherny, S. S., & Cardon, L. R. (1993). Continuity and change in cognitive development. In R. P. G. E. McClearn (Ed.), Nature, nurture and psychology (pp. 77–98). Washington, DC: American Psychological Association.Google Scholar
  48. Fulker, D. W., DeFries, J. C., & Plomin, R. (1988). Genetic influence on general mental ability increases between infancy and middle childhood. Nature, 336, 767–769.PubMedGoogle Scholar
  49. Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan.Google Scholar
  50. Gardner, H. (2006). Multiple intelligences: New Horizons. New York: Basic Books.Google Scholar
  51. Gill, C. E., Jardine, R., & Martin, N. G. (1985). Further evidence for genetic influences on educational achievement. British Journal of Educational Psychology, 55, 240–250.PubMedGoogle Scholar
  52. Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 23(1), 79–132.Google Scholar
  53. Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science, 13(1), 1–4.Google Scholar
  54. Haier, A. J. (2011). Biological basis of intelligence. R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 351–370). New York: Cambridge University Press.Google Scholar
  55. Hallgren, B. (1950). Specific dyslexia (Congenital word-blindness): A clinical and genetic study. Acta Psychiatrica et Neurologica Scandinavica, 65 (Supplement), 1–287.Google Scholar
  56. Halpern, D. F. (2000). Sex differences in cognitive abilities (3rd ed.) Mahwah: Lawrence Earlbaum Associates.Google Scholar
  57. Harlaar, N., Dale, P. S., & Plomin, R. (2007). From learning to read to reading to learn: Substantial and stable genetic influence. Child Development, 78(1), 116–131.PubMedGoogle Scholar
  58. Harlaar, N., Spinath, F. M., Dale, P. S., & Plomin, R. (2005). Genetic influences on early word recognition abilities and disabilities: a study of 7-year-old twins. Journal of Child Psychology and Psychiatry, 46(4), 373–384. doi:10.1111/j.1469-7610.2004.00358.xPubMedGoogle Scholar
  59. Hawke, J. L., Olson, R. K., Willcutt, E. G., Wadsworth, S. J., & DeFries, J. C. (2009). Gender ratios for reading difficulties. Dyslexia, 15(3), 239–242. doi:10.1002/dys.389PubMedGoogle Scholar
  60. Hawke, J. L., Wadsworth, S. J., & DeFries, J. C. (2006). Genetic influences on reading difficulties in boys and girls: The Colorado Twin Study. Dyslexia: An International Journal of Research and Practice, 12, 21–29.Google Scholar
  61. Hawke, J. L., Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2007). Etiology of reading difficulties as a function of gender and severity. Reading and Writing, 20(1–2), 13–25.Google Scholar
  62. Haworth, C. M., Wright, M. J., Martin, N. W., Martin, N. G., Boomsma, D. I., Bartels, M., et al. (2009a). A twin study of the genetics of high cognitive ability selected from 11,000 twin pairs in six studies from four countries. Behavior Genetics, 39(4), 359–370. doi:10.1007/s10519-009-9262-3Google Scholar
  63. Haworth, C. M. A., Dale, P. S., & Plomin, R. (2009b). Generalist genes and high cognitive ability. Behavior Genetics, 39, 437–445.Google Scholar
  64. Haworth, C. M., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J., van Beijsterveldt, C. E., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry, 15(11), 1112–1120. doi: mp200955[pii]10.1038/mp.2009.55PubMedGoogle Scholar
  65. Hayiou-Thomas, M. E., Dale, P. S., & Plomin, R. (2012). The etiology of variation in language skills changes with development: a longitudinal twin study of language from 2 to 12 years. Developmental Science, 15(2), 233–249.PubMedGoogle Scholar
  66. Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321, 494–495.PubMedGoogle Scholar
  67. Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta analysis. Psychological Bulletin, 104(1), 53–69.Google Scholar
  68. Iacono, W. G., Carlson, S. R., Taylor, J. T., Elkins, I. J., & McGue, M. (1999). Behavioral disinhibition and the development of substance use disorders: Findings from the Minnesota Twin Family Study. Development and Psychopathology, 11, 869–900.PubMedGoogle Scholar
  69. Jensen, A. R. (1967). Estimation of the limits of heritability of traits by comparison of monozygotic and dizygotic twins. Proceedings of the National Academy of Sciences, 58, 149–157.Google Scholar
  70. Jensen, A. R. (1969a). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 39, 1–123.Google Scholar
  71. Jensen, A. R. (1969b). Reducing the heredity-environment uncertainty. Harvard Educational Review, 39, 449–483.Google Scholar
  72. Jensen, A. R. (1972). Genetics and education. New York: Harper and Row.Google Scholar
  73. Kagan, J. S. (1969). Inadequate evidence and illogical conclusions. Harvard Educational Review, 39, 274–277.Google Scholar
  74. Kirkpatrick, R. M., McGue, M., & Iacono, W. (2009). Shared environmental contributions to high cognitive ability. Behavior Genetics, 39, 406–416.PubMedGoogle Scholar
  75. Koeppen-Schomerus, G., Spinath, F. M., & Plomin, R. (2003). Twins and non-twin siblings: different estimates of shared environmental influence in early childhood. Twin Research, 6, 97–105.PubMedGoogle Scholar
  76. Kovas, Y., Haworth, C. M., Petrill, S. A., & Plomin, R. (2007). Mathematical ability of 10-year-old boys and girls: genetic and environmental etiology of typical and low performance. Journal of Learning Disabilities, 40(6), 554–567. doi:10.1177/00222194070400060601Google Scholar
  77. Kutalik, Z., Whittaker, J., Waterworth, D., Beckmann, J. S., & Bergmann, S. (2011). Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability. Genet Epidemiol, 35(5), 341–349. doi:10.1002/gepi.20582PubMedGoogle Scholar
  78. Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: genetic and environmental etiologies. Journal of Learning Disabilities, 28(2), 96–106.PubMedGoogle Scholar
  79. Loehlin, J. C., & Nichols, R. C. (1976). Heredity, environment, and personality: A study of 850 sets of twins. Austin: University of Texas Press.Google Scholar
  80. Loo, S. K., Shtir, C., Doyle, A. E., Mick, E., McGough, J. J., McCracken, J., et al. (2012). Genome-wide association study of intelligence: Additive effects of novel brain expressed genes. Journal of the American Academy of Child and Adolescent Psychiatry, 51(4), 432–440.PubMedGoogle Scholar
  81. Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Zhu, G., Evans, D. M., et al. (2006). Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behav Genet, 36(1), 45–55. doi:10.1007/s10519-005-9003-1Google Scholar
  82. Luo, D. S., Thompson, L. A., & Detterman, D. K. (2003). Phenotypic and behavioral genetic covariation between elemental cognitive components and scholastic measures. Behavior Genetics, 33(3), 221–246.PubMedGoogle Scholar
  83. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford: Stanford University Press.Google Scholar
  84. Martin, N. G. (1975). The inheritance of scholastic abilities in a sample of twins. II. Genetical analysis of examination results. Annals of Human Genetics, 39, 219–229.PubMedGoogle Scholar
  85. McArdle, J. J. (2006). Latent curve analyses of longitudinal twin data using a mixed-effects biometric approach. Twin Research and Human Genetics, 9(3), 343–359.PubMedGoogle Scholar
  86. McArdle, J. J., Prescott, C. A., Hamagami, F., & Horn, J. L. (1998). A contemporary method for developmental-genetic analyses of age changes in intellectual abilities. Developmental Neuropsychology, 14, 69–114.Google Scholar
  87. McGrew, K. S. (Ed.). (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, present, and future. New York: Guilford Press.Google Scholar
  88. McGue, M., Bouchard, T. J. J., Iacono, W. G., & Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective. R. P. G. E. McClearn (Ed.), Nature, Nurture, and Psychology (pp. 59–76). Washington D.C.: American Psychological Association Press.Google Scholar
  89. Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100K SNP microarrays in a sample of 5760 children. Mol Psychiatry, 13(7), 729–740. doi:10.1038/sj.mp.4002063PubMedGoogle Scholar
  90. Medland, S. E., Wright, M. J., Geffen, G. M., Hay, D. A., Levy, F., Martin, N. G., & Duffy, D. L. (2003). Special twin environments, genetic influences and their effects on the handedness of twins and their siblings. Twin Research, 6, 119–130.PubMedGoogle Scholar
  91. Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Press.Google Scholar
  92. Neale, M. C., & Maes, H. H. M. (2002). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publishers.Google Scholar
  93. Neale, M. C., & McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Research, 3, 165–177.PubMedGoogle Scholar
  94. Petrill, S., Plomin, R., DeFries, J. C., & Hewitt, J. K. (Ed.), (2003). Nature, nurture, and the transition to adolescence. New York: Oxford University Press.Google Scholar
  95. Petrill, S. A., & Deater-Deckard, K. (2004). The heritability of general cognitive ability: A within-family adoption design. Intelligence, 32(4), 403–409. doi101016/j.intell.2004.05.001Google Scholar
  96. Petrill, S. A., Kovas, Y., Hart, S. A., Thompson, L. A., & Plomin, R. (2009). The genetic and environmental etiology of high math performance in 10-year-old Twins. Behav Genet 39, 371–379.PubMedGoogle Scholar
  97. Petrill, S. A., Lipton, P. A., Hewitt, J. K., Plomin, R., Cherny, S. S., Corley, R., & DeFries, J. C. (2004). Genetic and environmental contributions to general cognitive ability through the first 16 years of life. Developmental Psychology, 40, 805–812.PubMedGoogle Scholar
  98. Petrill, S. A., Saudino, K., Cherny, S. S., Emde, R. N., Fulker, D. W., Hewitt, J. K., & Plomin, R. (1998). Exploring the genetic and environmental etiology of high general cognitive ability in fourteen- to thirty-six-month-old twins. Child Development, 69(1), 68–74.PubMedGoogle Scholar
  99. Petrill, S. A., Saudino, K., Cherny, S. S., Emde, R. N., Hewitt, J. K., Fulker, D. W., & Plomin, R. (1997). Exploring the genetic etiology of low general cognitive ability from 14 to 36 months. Developmental Psychology, 33(3), 544–548.PubMedGoogle Scholar
  100. Plomin, R. (2012). Genetics: How intelligence changes with age. Nature, 482(7384), 165–166. doi:10.1038/482165aPubMedGoogle Scholar
  101. Plomin, R., & DeFries, J. C. (1980). Genetics and intelligence: Recent data. Intelligence, 4, 15–24.Google Scholar
  102. Plomin, R., & DeFries, J. C. (1985). Origins of individual differences in infancy: The Colorado adoption project. New York: Academic Press.Google Scholar
  103. Plomin, R., & DeFries, J. C. (1998). The genetics of cognitive abilities and disabilities. Scientific American, 278(5), 62–69.PubMedGoogle Scholar
  104. Plomin, R., DeFries, J. C., & Fulker, D. W. (1988). Nature and nurture during infancy and early childhood. New York: Cambridge University Press.Google Scholar
  105. Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J.M. (2013). Behavioral genetics (6th ed.). New York: Worth Publishers.Google Scholar
  106. Plomin, R., Fulker, D. W., Corley, R., & DeFries, J. C. (1997). Nature, nurture, and cognitive development from 1 to 16 years: A parent-offspring adoption study. Psychological Science, 8(6), 442–447.Google Scholar
  107. Plomin, R., & Haworth, C. M. A. (2009). Genetics of high cognitive abilities. Behavior Genetics, 39, 347–349.PubMedGoogle Scholar
  108. Plomin, R., Hill, L., Craig, I. W., McGuffin, P., Purcell, S., Sham, P., et al. (2001). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behavior Genetics, 31(6), 497–509.PubMedGoogle Scholar
  109. Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131(4), 592–617. doi:10.1037/0033-2909.131.4.592PubMedGoogle Scholar
  110. Plomin, R. A. D., DeFries, J. C. (1979). Multivariate behavior genetic analysis of twin data on scholastic abilities. Behavior Genetics, 9, 505–517.PubMedGoogle Scholar
  111. Posthuma, D., Luciano, M., Geus, E. J., Wright, M. J., Slagboom, P. E., Montgomery, G. W., et al. (2005). A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet, 77(2), 318–326. doi:10.1086/432647PubMedGoogle Scholar
  112. Reynolds, C. A., Hewitt, J. K., Erickson, M. T., Silberg, J. L., Rutter, M., Simonoff, E., et al. (1996). The genetics of children’s oral reading performance. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37(4), 425–434.Google Scholar
  113. Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273(5281), 1516–1517.PubMedGoogle Scholar
  114. Rose, L. T., & Fischer, K. W. (2011).Intelligence in childhood. R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 144–173). New York: Cambridge University Press.Google Scholar
  115. Sattler, J. M. (1992). Assessment of children. San Diego: Jerome M. Sattler.Google Scholar
  116. Smith, S. D. (2010). Learning disabilities. In J. Nurnberger & W. Berrettini (Eds.), Psychiatric Genetics. Cambridge: Cambridge University Press.Google Scholar
  117. Snyderman, M., & Rothman, S. (1987). Survey of expert opinion on intelligence and aptitude testing. American Psychologist, 42, 137–144.Google Scholar
  118. Spearman, C. E. (1923). The nature of intelligence and the principles of cognition. London: Macmillan.Google Scholar
  119. Spearman, C. E. (1927). The abilities of man. New York: Macmillan.Google Scholar
  120. Sternberg, R. (2012). Intelligence. Dialogues in Clinical Neuroscience, 14, 19–27.PubMedGoogle Scholar
  121. Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.Google Scholar
  122. Sternberg, R. J., & Kauffman, S. B. (2011). The cambridge handbook of intelligence. New York: Cambridge University Press.Google Scholar
  123. Stevenson, J., Graham, P., Fredman, G., & McLoughlin, V. (1987). A twin study of genetic influences on reading and spelling ability and disability. Journal of Child Psychology and Psychiatry, 28(2), 229–247.PubMedGoogle Scholar
  124. Terman, L. M., & Merrill, M. A. (1973). Stanford-Binet Intelligence Scale: 1972 Norms edition. Boston: Houghton Mifflin.Google Scholar
  125. Thomas, C. J. (1905). Congenital “word-blindness” and its treatment. Ophthalmoscope, 3, 380–385.Google Scholar
  126. Thompson, L. A., Detterman, D. K., & Plomin, R. (1991). Association between cognitive abilities and scholastic achievement: Genetic overlap, but environmental differences. Psychological Science, 2, 158–165.Google Scholar
  127. Thorndike, E. L. (1927). The measurement of intelligence. New York: Bureau of Publications, Teachers College, Columbia University.Google Scholar
  128. Thurstone, L. L. (1938). Primary mental abilities. Psychometric Monographs, Vol. 1. ix + 121.Google Scholar
  129. Thurstone, L. L., & Thurstone, T. G. (1941). Factorial studies of intelligence. Psychometric Monographs, 2, 1–94.Google Scholar
  130. van Soelen, I. L., Brouwer, R. M., van Leeuwen, M., Kahn, R. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2011). Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics, 14(2), 119–128. doi:10.1375/twin.14.2.119Google Scholar
  131. Wadsworth, S. J. (1994). School achievement. In R. P. J. C. DeFries & D. W. Fulker (Ed.), Nature and nurture during middle childhood (pp. 86–101). Oxford: Blackwell.Google Scholar
  132. Wadsworth, S. J., Corley, R. P., Hewitt, J. K. Plomin, R., & DeFries, J. C. (2002). Parent-offspring resemblance for reading performance at 7, 12, and 16 years of age in the Colorado Adoption Project. Journal of Child Psychology and Psychiatry and Allied Disciplines, 43, 769–774.Google Scholar
  133. Wadsworth, S. J., Corley, R. P., Plomin, R., Hewitt, J. K., & DeFries, J. C. (2006). Genetic and environmental influences on continuity and change in reading achievement in the Colorado Adoption Project. In A. H. M. Ripke (Ed.), Developmental contexts of middle childhood: Bridges to adolescence and adulthood (pp. 87–106). New York: Cambridge University Press.Google Scholar
  134. Wadsworth, S. J., & DeFries, J. C. (2005). Genetic etiology of reading difficulties in boys and girls. Twin Research and Human Genetics, 8(6), 594–601. doi:10.1375/183242705774860196PubMedGoogle Scholar
  135. Wadsworth, S. J., DeFries, J. C., Fulker, D. W., & Plomin, R. (1995a). Cognitive ability and academic achievement in the Colorado Adoption Project: A multivariate genetic analysis of parent-offspring and sibling data. Behavior Genetics, 25(1), 1–15.Google Scholar
  136. Wadsworth, S. J., DeFries, J. C., Fulker, D. W., Olson, R. K., & Pennington, B. F. (1995b). Reading performance and verbal short-term memory: A twin study of reciprocal causation. Intelligence, 20, 145–167.Google Scholar
  137. Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2010). Differential genetic etiology of reading difficulties as a function of IQ: An update. Behavior Genetics, 40(6), 751–758.PubMedGoogle Scholar
  138. Wadsworth, S. J., Olson, R. K., Willcutt, E. G., & DeFries, J. (2011). Multiple regression analysis of reading performance data from twin pairs with reading difficulties and nontwin siblings: The augmented model. Twin Research and Human Genetics, 15, 116–119.Google Scholar
  139. Wadsworth, S. J., Olson, R. K., Willcutt, E. G., & DeFries, J. C. (2012). Multiple regression analysis of reading performance data from twin pairs with reading difficulties and nontwin siblings: The augmented model. Twin Research and Human Genetics, 15(1), 116–119.PubMedGoogle Scholar
  140. Wasserman, J. D., & Tulsky, D. S. (2005). A history of intelligence assessment. D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests and issues (2nd ed., pp. 3–22). New York: Guilford Press.Google Scholar
  141. Wechsler, D. (1958). The measurement and appraisal of adult intelligence. Baltimore: Williams and Wilkins.Google Scholar
  142. Wechsler, D. (1974). Manual for the Wechsler Intelligence scale for children, revised. New York: The Psychological Corporation.Google Scholar
  143. Wechsler, D. (1981). Examiner’s manual: Wechsler adult intelligence scale-revised. New York: The Psychological Corporation.Google Scholar
  144. Wechsler, D. (1991). Manual for the Wechsler intelligence scale for children (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  145. Wechsler, D. (2002). Examiners manual: The Wechsler individual achievement test—2nd edition. San Antonio: The Psychological Corporation.Google Scholar
  146. Wechsler, D. (2003). Manual for the Wechsler Intelligence scale for children (4th ed.). San Antonio: The Psychological Corporation.Google Scholar
  147. Willis, J. O., Dumont, R., & Kaufman, A. S. (2011). Factor-analytic models of intelligence. R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 39–57). New York: Cambridge University Press.Google Scholar
  148. Wilson, R. S. (1983). The Louisville Twin Study: developmental synchronies in behavior. Child Development, 54(2), 298–316.PubMedGoogle Scholar
  149. Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Itasca: Riverside Publishing.Google Scholar
  150. Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76–82. doi:101016/j.ajhg.2010.11.011PubMedGoogle Scholar
  151. Zuk, O., Hechte, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences U S A, 109(4), 1193–1198.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Sally J. Wadsworth
    • 1
    Email author
  • Robin P. Corley
    • 1
  • John C. DeFries
    • 1
  1. 1.Institute for Behavioral GeneticsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations