Skip to main content

Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge Using SWAN+ADCIRC and FigureGen

  • Conference paper
  • First Online:

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 156))

Abstract

Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge is useful for two primary purposes: forecasting of storm impacts for response planning, particularly the evacuation of vulnerable coastal populations; and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration, and sustainability. Model results must be communicated quickly and effectively, to provide context about the magnitudes and locations of the maximum waves and surges in time for meaningful actions to be taken in the impact region before a storm strikes.In this paper, we present an overview of the SWAN + ADCIRC modeling system for coastal waves and circulation. We also describe FigureGen, a graphics program adapted to visualize hurricane waves and storm surge as computed by these models. The system was applied recently to forecast Hurricane Isaac (2012) as it made landfall in southern Louisiana. Model results are shown to be an accurate warning of the impacts of waves and circulation along the northern Gulf coastline, especially when communicated to emergency managers as geo-referenced images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arcement, G.J., and Schneider, V.R. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. U.S. Geological Survey Water Supply Paper 2339, U.S. Geological Survey, Denver, CO, 38pp. (1989).

    Google Scholar 

  2. Barnes, H.H. Roughness characteristics of natural channels. U.S. Geological Survey Water Supply Paper 1849, U.S. Geological Survey, Washington, DC, 213pp. (1967).

    Google Scholar 

  3. Blanton, B.O., McGee, J., Fleming, J.G., Kaiser, C., Kaiser, H., Lander, H., Luettich Jr., R.A., Dresback, K.M., and Kolar, R.L. Urgent computing of storm surge for North Carolina’s coast. Proceedings of the International Conference on Computational Science, ICCS 2012, Procedia Computer Science, 9, 1677–1686 (2012).

    Article  Google Scholar 

  4. Booij, N., and Holthuijsen, L.H. Propagation of ocean waves in discrete spectral wave models. Journal of Computational Physics, 68, 307–326 (1987).

    Article  MATH  Google Scholar 

  5. Booij, N., Ris, R.C., and Holthuijsen, L.H. A third-generation wave model for coastal regions, Part I, Model description and validation. Journal of Geophysical Research, 104, 7649–7666 (1999).

    Article  Google Scholar 

  6. Brown, D., and Brennan, M. (2012). Hurricane Isaac Tropical Cyclone Position Estimate. National Hurricane Center, August 28, http://www.nhc.noaa.gov/archive/2012/al09/al092012.posest.08282356.shtml.

  7. Chow, V.T. Open-Channel Hydraulics. McGraw-Hill Book Company, 680pp. (1959).

    Google Scholar 

  8. Bunya, S., Dietrich, J.C.,Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.E., Resio, D.T., Luettich Jr., R.A., Dawson, C.N., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., and Roberts, H.J. A High Resolution Coupled Riverine Flow, Tide, Wind, WindWave and Storm Surge Model for Southern Louisiana and Mississippi: Part I: Model Development and Validation. Monthly Weather Review, 138(2), 345–377 (2010).

    Google Scholar 

  9. Dawson, C.N., Westerink, J.J., Feyen, J.C., and Pothina, D. Continuous, Discontinuous and Coupled Discontinuous–Continuous Galerkin Finite Element Methods for the Shallow Water Equations. International Journal for Numerical Methods in Fluids, 52, 63–88 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawson, C.N., Kubatko, E.J., Westerink, J.J., Trahan, C.J., Mirabito, C., Michoski, C., and Panda, N. Discontinuous Galerkin Methods for Modeling Hurricane Storm Surge. Advances in Water Resources, DOI 10.1016/j.advwatres.2010.11.004, 34, 1165–1176 (2011).

    Google Scholar 

  11. DeMeritt, M. A Foundation for Ocean GIS. ArcUser, Fall 2011.

    Google Scholar 

  12. Dietrich, J.C., Kolar, R.L., Luettich Jr, R.A. Assessment of ADCIRCs Wetting and Drying Algorithm. Proceedings of Computational Methods in Water Resources, C.T. Miller, M.W. Farthing, W.G. Gray, and G.F. Pinder, eds., 2, 1767—1778 (2004).

    Google Scholar 

  13. Dietrich, J.C., Bunya, S., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R.E., Resio, D.T., Luettich Jr., R.A., Dawson, C.N., Cardone, V.J., Cox, A.T., Powell, M.D.,Westerink, H.J., and Roberts, H.J. A High Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part II: Synoptic Description and Analyses of Hurricanes Katrina and Rita. Monthly Weather Review, 138, 378–404 (2010).

    Google Scholar 

  14. Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C.N., Luettich Jr, R.A., Jensen, R.E., Smith, J.M., Stelling, G.S., Stone, G.W. Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45–65, DOI:10.1016/j.coastaleng.2010.08.001 (2011a).

    Google Scholar 

  15. Dietrich, J.C., Westerink, J.J., Kennedy, A.B., Smith, J.M., Jensen, R.E., Zijlema, M., Holthuijsen, L.H., Dawson, C.N., Luettich Jr., R.A., Powell, M.D., Cardone, V.J., Cox, A.T., Stone, G.W., Pourtaheri, H., Hope, M.E., Tanaka, S., Westerink, L.G., Westerink, H.J., and Cobell, Z. Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Validation and Synoptic Analysis in Southern Louisiana. Monthly Weather Review, 139(8), 2488–2522 (2011b).

    Article  Google Scholar 

  16. Dietrich, J.C., Trahan, C.J., Howard, M.T., Fleming, J.G., Weaver, R.J., Tanaka, S., Yu, L., Luettich Jr, R.A., Dawson, C.N., Westerink, J.J., Wells, G., Lu, A., Vega, K., Kubach, A., Dresback, K.M., Kolar, R.L., Kaiser, C., Twilley, R.R. (2012). Surface Trajectories of Oil Transport along the Northern Coastline of the Gulf of Mexico. Continental Shelf Research, 41(1), 17–47, DOI:10.1016/j.csr.2012.03.015 (2012a).

    Article  Google Scholar 

  17. Dietrich, J.C., Tanaka, S., Westerink, J.J., Dawson, C.N., Luettich Jr, R.A., Zijlema, M., Holthuijsen, L.H., Smith, J.M., Westerink, L.G., Westerink, H.J. Performance of the Unstructured-Mesh, SWAN + ADCIRC Model in Computing Hurricane Waves and Surge. Journal of Scientific Computing, 52(2), 468–497, DOI:10.1007/s10915-011-9555-6 (2012b).

    Google Scholar 

  18. Fleming, J.G., Fulcher, C., Luettich Jr., R.A., Estrade, B., Allen, G., and Winer, H. A Real Time Storm Surge Forecasting System using ADCIRC. Proceedings of Estuarine and Coastal Modeling X, Spaulding, M.L. (ed.), ASCE, 373–392 (2008).

    Google Scholar 

  19. Garratt, J.R. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915–929 (1977).

    Article  Google Scholar 

  20. Holland, G.J. An analytical model of the wind and pressure proles in hurricanes. Monthly Weather Review, 108, 1212–1218 (1980).

    Article  Google Scholar 

  21. Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing, 20(1), 359–392 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. Kennedy, A.B., Gravois, U., Zachry, B.C., Westerink, J.J., Hope, M.E., Dietrich, J.C., Powell, M.D., Cox, A.T., Luettich Jr., R.A., and Dean, R.G.. Origin of the Hurricane Ike Forerunner Surge. Geophysical Research Letters, 38, L08608, DOI 10.1029/2011GL047090 (2011).

    Google Scholar 

  23. Kolar, R.L., Westerink, J.J., Cantekin, M.E., and Blain, C.A. Aspects of nonlinear simulations using shallow water models based on the wave continuity equations. Computers and Fluids, 23(3), 1–24 (1994).

    Google Scholar 

  24. Le Provost, C., Lyard, F., Molines, J., Genco, M., and Rabilloud, F. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. Journal of Geophysical Research, 103, 5513–5529, (1998).

    Article  Google Scholar 

  25. Luettich Jr., R.A., and Westerink, J.J. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX, http://adcirc.org/adcirc_theory_2004_12_08.pdf (2004).

  26. Martyr, R.C., Dietrich, J.C., Westerink, J.J., Kerr, P.C., Dawson, C.N., Smith, J.M., Pourtaheri, H., Powell, N., van Ledden, M., Tanaka, S., Roberts, H.J., Westerink, L.G., and Westerink, H.J. Simulating Hurricane Storm Surge in the Lower Mississippi River under Varying Flow Conditions. Journal of Hydraulic Engineering, 139(5), 492–501, DOI: 10.1061/(ASCE)HY.1943-7900.0000699 (2013).

    Google Scholar 

  27. Mattocks, C., and Forbes, C. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Modelling, 25, 95–119 (2008).

    Article  Google Scholar 

  28. Mukai, A., Westerink, J.J., Luettich Jr., R.A., and Mark, D. Eastcoast 2001: A tidal constituent database for the Western North Atlantic, Gulf of Mexico and Caribbean Sea. Technical Report ERDC/CHL TR-02-24, U.S. Army Corps of Engineers, 201pp., (2002).

    Google Scholar 

  29. Pasch, R., and Roberts, D. (2012). Hurricane Isaac Tropical Cyclone Position Estimate. National Hurricane Center, August 28, http://www.nhc.noaa.gov/archive/2012/al09/al092012.posest.08290400.shtml.

  30. Pasch, R., and Roberts, J. (2012). Hurricane Isaac Tropical Cyclone Position Estimate. National Hurricane Center, August 29, http://www.nhc.noaa.gov/archive/2012/al09/al092012.posest.08290758.shtml.

  31. Powell, M.D., Vickery, P.J., and Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, March 20, 279–283 (2003).

    Google Scholar 

  32. Powell, M.D. Drag Coefficient Distribution and Wind Speed Dependence in Tropical Cyclones. Final Report to the National Oceanic and Atmospheric Administration (NOAA) Joint Hurricane Testbed (JHT) Program (2006).

    Google Scholar 

  33. Seahorse Coastal Consulting (2012a). The ASGS Developer’s Guide 2011. Available online at: http://www.seahorsecoastal.com/ASGSDevGuide2011.pdf.

  34. Seahorse Coastal Consulting (2012b). The ASGS Operator’s Guide 2011. Available online at: http://www.seahorsecoastal.com/ASGSOperatorsGuide2011.pdf.

  35. Stelling, G.S., and Leendertse, J.J. Approximation of convective processes by cyclic AOI methods. Proceedings of the 2nd international conference on estuarine and coastal modeling, ASCE Tampa, Florida, 771–782 (1992).

    Google Scholar 

  36. Tanaka, S., Bunya, S., Westerink, J.J., Dawson, C.N., and Luettich Jr., R.A. Scalability of an Unstructured Grid Continuous Galerkin Based Hurricane Storm Surge Model. Journal of Scientific Computing, 46, 329–358 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. Wessel, P., and Smith, W.H.F. Free software helps map and display data, EOS Trans. AGU, 72, 441 (1991).

    Google Scholar 

  38. Westerink, J. J., Luettich Jr., R.A., and Scheffner, N.W. ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries, Report 3: Development of a tidal constituent database for the western North Atlantic and Gulf of Mexico. Technical Report DRP 92-6, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS (1993).

    Google Scholar 

  39. Westerink, J.J., Luettich Jr., R.A., and Muccino, J.C. Modeling tides in the western North Atlantic using unstructured graded grids. Tellus 46A, 178–199 (1994).

    Google Scholar 

  40. Westerink, J.J., Luettich Jr., R.A., Feyen, J.C., Atkinson, J.H., Dawson, C.N., Roberts, H.J., Powell, M.D., Dunion, J.P., Kubatko, E.J., Pourtaheri, H. A Basin to Channel Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana. Monthly Weather Review, 136, 3, 833–864 (2008).

    Article  Google Scholar 

  41. Zijlema, M. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57, 267–277 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by awards from the National Science Foundation (DMS-0915223); the SSPEED Center at Rice University (http://sspeed.rice.edu/); the Gulf of Mexico Research Initiative (http://gulfresearchinitiative.org/); and the Coastal Hazards Center of Excellence, a U.S. Department of Homeland Security Science and Technology Center of Excellence (2008-ST-061-ND 0001). Computational resources were provided by the Texas Advanced Computing Center (http://www.tacc.utexas.edu/) and the Extreme Science and Engineering Discovery Environment (under award number TG-080016N). Some images were overlaid on the ocean basemap that was designed and developed by Esri [11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Dietrich, J.C. et al. (2013). Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge Using SWAN+ADCIRC and FigureGen. In: Dawson, C., Gerritsen, M. (eds) Computational Challenges in the Geosciences. The IMA Volumes in Mathematics and its Applications, vol 156. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7434-0_3

Download citation

Publish with us

Policies and ethics