Skip to main content

Physical and Computational Issues in the Numerical Modeling of Ocean Circulation

  • Conference paper
  • First Online:

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 156))

Abstract

The large-scale circulation of the world’s oceans can be modeled by systems of partial differential equations of fluid dynamics, as scaled and parameterized for oceanic flows. This paper outlines some physical, mathematical, and computational aspects of such modeling. The topics include multiple length, time, and mixing scales; the choice of vertical coordinate; properties of the shallow water equations for a single-layer fluid, including effects of the rotating reference frame; a statement of the governing equations for a three-dimensional stratified fluid with an arbitrary vertical coordinate; time-stepping and multiple time scales; and various options for spatial discretizations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Modelling, 4 (2002), pp. 55–88.

    Google Scholar 

  2. R. Bleck, S. Benjamin, J. Lee, and A. E. MacDonald, On the use of an adaptive, hybrid-isentropic vertical coordinate in global atmospheric modeling, Monthly Weather Review, 138 (2010), pp. 2188–2210.

    Google Scholar 

  3. C. Dawson, E. J. Kubatko, J. J. Westerink, C. Trahan, C. Mirabito, C. Michoski, and N. Panda, Discontinuous Galerkin methods for modeling hurricane storm surge, Advances in Water Resources, 34 (2011), pp. 1165–1176.

    Google Scholar 

  4. S. M. Griffies, Fundamentals of Ocean Climate Models, Princeton University Press, Princeton, N.J., 2004.

    Google Scholar 

  5. R. L. Higdon, A two-level time-stepping method for layered ocean circulation models: further development and testing, J. Comput. Phys., 206 (2005), pp. 463–504.

    Google Scholar 

  6. R. L. Higdon, Numerical modelling of ocean circulation, Acta Numerica, 15 (2006), pp. 385–470.

    Google Scholar 

  7. D. A. Knoll and D. E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

    Google Scholar 

  8. C. C. Pain, M. D. Piggott, A. J. H. Goddard, F. Fang, G. J. Gorman, D. P. Marshall, M. D. Eaton, P. W. Power, and C. R. E. de Oliveira, Three-dimensional unstructured mesh ocean modelling, Ocean Modelling, 10 (2005), pp. 5–33.

    Google Scholar 

  9. T. D. Ringler, J. Thuburn, J. B. Klemp, and W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily structured C-grids, J. Comput. Phys., 229 (2010), pp. 3065–3090.

    Google Scholar 

  10. A. F. Shchepetkin and J. C. McWilliams, The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9 (2005), pp. 347–404.

    Google Scholar 

  11. L. White, E. Deleersnijder, and V. Legat, A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin, Ocean Modelling, 22 (2008), pp. 26–47.

    Google Scholar 

Download references

Acknowledgements

I thank Rainer Bleck and Todd Ringler for useful discussions on matters related to the contents of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Higdon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Higdon, R.L. (2013). Physical and Computational Issues in the Numerical Modeling of Ocean Circulation. In: Dawson, C., Gerritsen, M. (eds) Computational Challenges in the Geosciences. The IMA Volumes in Mathematics and its Applications, vol 156. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7434-0_1

Download citation

Publish with us

Policies and ethics