Skip to main content

The Data: Observational Studies and Sequentially Randomized Trials

  • Chapter
  • First Online:
Statistical Methods for Dynamic Treatment Regimes

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

The data for constructing (optimal) dynamic treatment regimes that we consider are obtained from either longitudinal observational studies or sequentially randomized trials. In this chapter, we review these two types of data sources, their advantages and drawbacks, and the assumptions required to perform valid analyses in each, along with some examples. We also discuss a basic framework of causal inference in the context of observational studies, and power and sample size issues in the context of randomized studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book, we use the term treatment generically to denote either a medical treatment or an exposure (which is the preferred term in the causal inference literature and more generally in epidemiology).

  2. 2.

    While the term stage is commonly used in the randomized trial literature, the term interval is more popular in the causal inference literature. In this book, for consistency, we will use the term stage for both observational and randomized studies.

References

  • Almirall, D., Compton, S. N., Gunlicks-Stoessel, M., Duan, N., & Murphy, S. A. (2012a). Designing a pilot sequential multiple assignment randomized trial for developing an adaptive treatment strategy. Statistics in Medicine, 31, 1887–1902.

    Article  MathSciNet  Google Scholar 

  • Auyeung, S. F., Long, Q., Royster, E. B., Murthy, S., McNutt, M. D., Lawson, D., Miller, A., Manatunga, A., & Musselman, D. L. (2009). Sequential multiple-assignment randomized trial design of neurobehavioral treatment for patients with metastatic malignant melanoma undergoing high-dose interferon-alpha therapy. Clinical Trials6, 480–490.

    Article  Google Scholar 

  • Banerjee, A., & Tsiatis, A. A. (2006). Adaptive two-stage designs in phase II clinical trials. Statistics in Medicine25, 3382–3395.

    Article  MathSciNet  Google Scholar 

  • Berry, D. A. (2001). Adaptive clinical trials and Bayesian statistics in drug development (with discussion). Biopharmaceutical Report, 9, 1–11.

    Google Scholar 

  • Berry, D. A. (2004). Bayesian statistics and the efficiency and ethics of clinical trials. Statistical Science19, 175–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, D. A., Mueller, P., Grieve, A. P., Smith, M., Parke, T., Blazek, R., Mitchard, N., & Krams, M. (2001). Adaptive Bayesian designs for dose-ranging drug trials. In Gatsonis, C., Kass, R.E., Carlin, B., Carriquiry, A. Gelman, A. Verdinelli, I., and West, M. (Eds.), Case studies in Bayesian statistics (Vol. V, pp. 99–181). New York: Springer.

    Google Scholar 

  • Berzuini, C., Dawid, A. P., & Didelez, V. (2012). Assessing dynamic treatment strategies. In C. Berzuini, A. P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 85–100). Chichester, West Sussex, United Kindom.

    Chapter  Google Scholar 

  • Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design, data analysis, and model building. New York: Wiley.

    MATH  Google Scholar 

  • Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics37, 373–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Buhlmann, P., & Yu, B. (2002). Analyzing bagging. Annals of Statistics30, 927–961.

    Article  MathSciNet  Google Scholar 

  • Carlin, B. P., Kadane, J. B., & Gelfand, A. E. (1998). Approaches for optimal sequential decision analysis in clinical trials. Biometrics54, 964–975.

    Article  MATH  Google Scholar 

  • Chakraborty, B. (2011). Dynamic treatment regimes for managing chronic health conditions: A statistical perspective. American Journal of Public Health101, 40–45.

    Article  Google Scholar 

  • Chakraborty, B., Murphy, S. A., & Strecher, V. (2010). Inference for non-regular parameters in optimal dynamic treatment regimes. Statistical Methods in Medical Research19, 317–343.

    Article  MathSciNet  Google Scholar 

  • Chakraborty, B., Laber, E. B., & Zhao, Y. (2013). Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics, (in press).

    Google Scholar 

  • Chen, M.-H., Muller, P., Sun, D., & Ye, K. (Eds.). (2010). Frontiers of statistical decision making and Bayesian analysis: In Honor of James O. Berger. New York: Springer.

    MATH  Google Scholar 

  • Clemen, R. T., & Reilly, T. (2001). Making hard decisions. Pacific Grove: Duxbury.

    Google Scholar 

  • Cohen, J. (1988). Statistical power for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.

    MATH  Google Scholar 

  • Cole, S. R., & Frangakis, C. (2009). The consistency statement in causal inference: A definition or an assumption? Epidemiology20, 3–5.

    Article  Google Scholar 

  • Cole, S. A., & Hernán, M. A. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology168, 656–664.

    Article  Google Scholar 

  • Collins, L. M., Murphy, S. A., & Bierman, K. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science5, 185–196.

    Article  Google Scholar 

  • Collins, L. M., Chakraborty, B., Murphy, S. A., & Strecher, V. J. (2009). Comparison of a phased experimental approach and a single randomized clinical trial for developing multicomponent behavioral interventions. Clinical Trials6, 5–15.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning20, 273–297.

    MATH  Google Scholar 

  • Cox, D. R. (1958). Planning of experiments. New York: Wiley.

    MATH  Google Scholar 

  • Cox, D. R., & Oaks, D. (1984). Analysis of survival data. Boca Raton, Florida: Chapman & Hall/CRC.

    Google Scholar 

  • Dawson, R., & Lavori, P. W. (2010). Sample size calculations for evaluating treatment policies in multi-stage designs. Clinical Trials7, 643–652.

    Article  Google Scholar 

  • Dawson, R., & Lavori, P. W. (2012). Efficient design and inference for multistage randomized trials of individualized treatment policies. Biostatistics13, 142–152.

    Article  MATH  Google Scholar 

  • Dehejia, R. H. (2005). Program evaluation as a decision problem. Journal of Econometrics125, 141–173.

    Article  MathSciNet  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, W., & Wahed, A. S. (2009). Sample size for two-stage studies with maintenance therapy. Statistics in Medicine28, 2028–2041.

    Article  MathSciNet  Google Scholar 

  • Ferguson, T. S. (1996). A course in large sample theory. London: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Gao, H. (1998). Wavelet shrinkage denoising using the nonnegative garrote. Journal of Computational and Graphical Statistics7, 469–488.

    MathSciNet  Google Scholar 

  • Greenland, S., Pearl, J., & Robins, J. M. (1999). Causal diagrams for epidemiologic research. Epidemiology10, 37–48.

    Article  Google Scholar 

  • Guez, A., Vincent, R., Avoli, M., & Pineau, J. (2008). Adaptive treatment of epilepsy via batch-mode reinforcement learning. In Proceedings of the innovative applications of artificial intelligence (IAAI), Chicago.

    Google Scholar 

  • Hernán, M. A., & Taubman, S. L. (2008). Does obesity shorten life? The importance of well-defined interventions to answer causal questions. International Journal of Obesity32, S8–S14.

    Article  Google Scholar 

  • Hernán, M. A., Brumback, B., & Robins, J. M. (2000). Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology, 11, 561–570.

    Article  Google Scholar 

  • Hernán, M. A., Hernández-Díaz, S., & Robins, J. M. (2004). A structural approach to selection bias. Epidemiology15, 615–625.

    Article  Google Scholar 

  • Hernán, M. A., Cole, S. J., Margolick, J., Cohen, M., & Robins, J. M. (2005). Structural accelerated failure time models for survival analysis in studies with time-varying treatments. Pharmacoepidemiology and Drug Safety14, 477–491.

    Article  Google Scholar 

  • Huang, F., & Lee, M.-J. (2010). Dynamic treatment effect analysis of TV effects on child cognitive development. Journal of Applied Econometrics25, 392–419.

    Article  MathSciNet  Google Scholar 

  • Kaelbling, L. P., Littman, M. L., & Moore, A. (1996). Reinforcement learning: A survey. The Journal of Artificial Intelligence Research4, 237–385.

    Google Scholar 

  • Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F., & Rinaldo, C. R. (1987). The Multicenter AIDS Cohort Study: Rationale, organization, and selected characteristics of the participants. American Journal of Epidemiology126, 310–318.

    Article  Google Scholar 

  • Kramer, M. S., Aboud, F., Miranova, E., Vanilovich, I., Platt, R., Matush, L., Igumnov, S., Fombonne, E., Bogdanovich, N., Ducruet, T., Collet, J., Chalmers, B., Hodnett, E., Davidovsky, S., Skugarevsky, O., Trofimovich, O., Kozlova, L., & Shapiro, S. (2008). Breastfeeding and child cognitive development: New evidence from a large randomized trial. Archives of General Psychiatry65, 578–584.

    Article  Google Scholar 

  • Lavori, P. W., & Dawson, R. (2004). Dynamic treatment regimes: Practical design considerations. Clinical Trials1, 9–20.

    Article  Google Scholar 

  • Lavori, P. W., & Dawson, R. (2008). Adaptive treatment strategies in chronic disease. Annual Review of Medicine59, 443–453.

    Article  Google Scholar 

  • LeBlanc, M., & Kooperberg, C. (2010). Boosting predictions of treatment success. Proceedings of the National Academy of Sciences107, 13559–13560.

    Article  Google Scholar 

  • Levin, B., Thompson, J. L. P., Chakraborty, R. B., Levy, G., MacArthur, R., & Haley, E. C. (2011). Statistical aspects of the TNK-S2B trial of tenecteplase versus alteplase in acute ischemic stroke: An efficient, dose-adaptive, seamless phase II/III design. Clinical Trials8, 398–407.

    Article  Google Scholar 

  • Li, Z., & Murphy, S. A. (2011). Sampe size formulae for two-stage randomized trials with survival outcomes. Biometrika, 98, 503–518.

    Article  MathSciNet  MATH  Google Scholar 

  • Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., Keefe, R. S. E., Davis, S., Davis, C. E., Lebowitz, B. D., & Severe, J. (2005). Effectiveness of antipsychotic drugs in patients with chronic schozophrenia. New England Journal of Medicine353, 1209–1223.

    Article  Google Scholar 

  • Moodie, E. E. M., Chakraborty, B., & Kramer, M. S. (2012). Q-learning for estimating optimal dynamic treatment rules from observational data. Canadian Journal of Statistics40, 629–645.

    Article  MathSciNet  Google Scholar 

  • Moodie, E. E. M., Dean, N., & Sun, Y. R. (2013). Q-learning: Flexible learning about useful utilities. Statistics in Biosciences, (in press).

    Google Scholar 

  • Murphy, S. A. (2005b). A generalization error for Q-learning. Journal of Machine Learning Research6, 1073–1097.

    MATH  Google Scholar 

  • Murphy, S. A., Van der Laan, M. J., Robins, J. M., & CPPRG (2001). Marginal mean models for dynamic regimes. Journal of the American Statistical Association96, 1410–1423.

    Google Scholar 

  • Murphy, S. A., Oslin, D., Rush, A. J., & Zhu, J. (2007b). Methodological challenges in constructing effective treatment sequences for chronic psychiatric disorders. Neuropsychopharmacology32, 257–262.

    Article  Google Scholar 

  • Nahum-Shani, I., Qian, M., Almiral, D., Pelham, W., Gnagy, B., Fabiano, G., Waxmonsky, J., Yu, J., & Murphy, S. (2012b). Q-learning: A data analysis method for constructing adaptive interventions. Psychological Methods17, 478–494.

    Article  Google Scholar 

  • Nankervis, J. C. (2005). Computational algorithms for double bootstrap confidence intervals. Computational Statistics & Data Analysis49, 461–475.

    Article  MathSciNet  MATH  Google Scholar 

  • Neugebauer, R., & Van der Laan, M. J. (2006). G-computation estimation for causal inference with complex longitudinal data. Computational Statistics & Data Analysis51, 1676–1697.

    Article  MathSciNet  MATH  Google Scholar 

  • Ng, A., & Jordan, M. (2000). PEGASUS: A policy search method for large MDPs and POMDPs.

    Google Scholar 

  • Olshen, R. A. (1973). The conditional level of the F-test. Journal of the American Statistical Association68, 692–698.

    MathSciNet  MATH  Google Scholar 

  • Pampallona, S., & Tsiatis, A. A. (1994). Group sequential designs for one and two sided hypothesis testing with provision for early stopping in favour of the null hypothesis. Journal of Statistical Planning and Inference42, 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Parmigiani, G. (2002). Modeling in medical decision making: A Bayesian approach. New York: Wiley.

    MATH  Google Scholar 

  • Petersen, M. L., Deeks, S. G., & Van der Laan, M. J. (2007). Individualized treatment rules: Generating candidate clinical trials. Statistics in Medicine26, 4578–4601.

    Article  MathSciNet  Google Scholar 

  • Partnership for Solutions (2004). Chronic conditions: Making the case for ongoing care: September 2004 update. Baltimore: Partnership for Solutions, Johns Hopkins University.

    Google Scholar 

  • Politis, D. N., Romano, J. P., & Wolf, M. (1999). Subsampling. New York: Springer.

    Book  MATH  Google Scholar 

  • Rich, B., Moodie, E. E. M., and Stephens, D.A. (2013) Adaptive individualized dosing in pharmacological studies: Generating candidate dynamic dosing strategies for warfarin treatment. (submitted).

    Google Scholar 

  • Robins, J. M. (1997). Causal inference from complex longitudinal data. In M. Berkane (Ed.), Latent variable modeling and applications to causality: Lecture notes in statistics (pp. 69–117). New York: Springer.

    Chapter  Google Scholar 

  • Robins J. M. (1999a). Marginal structural models versus structural nested models as tools for causal inference. In: M. E. Halloran & D. Berry (Eds.) Statistical models in epidemiology: The environment and clinical trials. IMA, 116, NY: Springer-Verlag, pp. 95–134.

    Google Scholar 

  • Robins, J. M., Hernán, M. A., & Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology11, 550–560.

    Article  Google Scholar 

  • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika70, 41–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology66, 688–701.

    Article  Google Scholar 

  • Rubin, D. B. (1980). Discussion of “randomized analysis of experimental data: The Fisher randomization test” by D. Basu. Journal of the American Statistical Association75, 591–593.

    Google Scholar 

  • Rubin, D. B., & Shenker, N. (1991). Multiple imputation in health-case data bases: An overview and some applications. Statistics in Medicine10, 585–598.

    Article  Google Scholar 

  • Saarela, O., Moodie, E. E. M., Stephens, D. A., & Klein, M. B. (2013a). On Bayesian estimation of marginal structural models (submitted).

    Google Scholar 

  • Schulte, P. J., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2012). Q- and A-learning methods for estimating optimal dynamic treatment regimes. arXiv, 1202.4177v1.

    Google Scholar 

  • Strecher, V., McClure, J., Alexander, G., Chakraborty, B., Nair, V., Konkel, J., Greene, S., Collins, L., Carlier, C., Wiese, C., Little, R., Pomerleau, C., & Pomerleau, O. (2008). Web-based smoking cessation components and tailoring depth: Results of a randomized trial. American Journal of Preventive Medicine34, 373–381.

    Article  Google Scholar 

  • Stroup, T. S., McEvoy, J. P., Swartz, M. S., Byerly, M. J., Glick, I. D., Canive, J. M., McGee, M., Simpson, G. M., Stevens, M. D., & Lieberman, J. A. (2003). The National Institute of Mental Health Clinical Antipschotic Trials of Intervention Effectiveness (CATIE) project: Schizophrenia trial design and protocol deveplopment. Schizophrenia Bulletin29, 15–31.

    Article  Google Scholar 

  • Thall, P. F., Millikan, R. E., & Sung, H. G. (2000). Evaluating multiple treatment courses in clinical trials. Statistics in Medicine30, 1011–1128.

    Article  Google Scholar 

  • Thall, P. F., Sung, H. G., & Estey, E. H. (2002). Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials. Journal of the American Statistical Association97, 29–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Thall, P. F., Wooten, L. H., Logothetis, C. J., Millikan, R. E., & Tannir, N. M. (2007a). Bayesian and frequentist two-stage treatment strategies based on sequential failure times subject to interval censoring. Statistics in Medicine26, 4687–4702.

    Article  MathSciNet  Google Scholar 

  • Van der Laan, M. J., & Robins, J. M. (2003). Unified methods for censored longitudinal data and causality. New York: Springer.

    Book  MATH  Google Scholar 

  • Wagner, E. H., Austin, B. T., Davis, C., Hindmarsh, M., Schaefer, J., & Bonomi, A. (2001). Improving chronic illness care: Translating evidence into action. Health Affairs20, 64–78.

    Article  Google Scholar 

  • Wahed, A. S., & Tsiatis, A. A. (2006). Semiparametric efficient estimation of survival distributions in two-stage randomisation designs in clinical trials with censored data. Biometrika93, 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Wald, A. (1949). Statistical decision functions. New York: Wiley.

    Google Scholar 

  • Wang, L., Rotnitzky, A., Lin, X., Millikan, R. E., & Thall, P. F. (2012). Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer. Journal of the American Statistical Association107, 493–508.

    Article  MathSciNet  MATH  Google Scholar 

  • Wathen, J. K., & Thall, P. F. (2008). Bayesian adaptive model selection for optimizing group sequential clinical trials. Statistics in Medicine27, 5586–5604.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakraborty, B., Moodie, E.E.M. (2013). The Data: Observational Studies and Sequentially Randomized Trials. In: Statistical Methods for Dynamic Treatment Regimes. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7428-9_2

Download citation

Publish with us

Policies and ethics