Atherosclerotic Carotid Plaque Segmentation in Ultrasound Imaging of the Carotid Artery

Chapter

Abstract

In this chapter, we propose and evaluate an integrated system for the segmentation of atherosclerotic plaque in ultrasound imaging of the carotid artery based on normalization, speckle reduction filtering, and four different snakes segmentation methods. These methods are the Williams and Shah, Balloon, Lai and Chin, and the gradient vector flow (GVF) snake. The performance of the four different plaque snakes segmentation methods was tested on 80 longitudinal ultrasound images of the carotid artery using receiver operating characteristic (ROC) analysis and the manual delineations of an expert. All four methods performed very satisfactorily and similarly in all measures evaluated with no significant differences between them; however, the Lai and Chin snakes segmentation method gave slightly better results. Concluding, it is proposed that the integrated system investigated in this study could be used successfully for the automated segmentation of the carotid plaque.

Keywords

Cholesterol Catheter Luminal Plague 

Abbreviations

2D

Two-dimensional

3D

Three-dimensional

4D

Four-dimensional

ACSRS

Asymptomatic carotid stenosis and risk of stroke

AS

Automated segmentation

ATL

Advanced Technology Laboratories

CCA

Common carotid artery

DsFlsmv

Despeckle filter linear scaling mean variance

F

Effectiveness

FNF

False-negative fraction

FPF

False-positive fraction

GT

Ground truth

GVF

Gradient vector flow

IMT

Intima–media thickness

IVUS

Intravascular ultrasound

KI

Kappa index

MR

Magnetic resonance

MRI

Magnetic resonance image

P

Precision

ROC

Receiver operating characteristics

Sp

Specificity

TIA

Transient ischemic attack

TNF

True-negative fraction

TPF

True-positive fraction

References

  1. 1.
    Zarins CK, Xu C, Glagov S (2001) Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis 155(1):157–164PubMedCrossRefGoogle Scholar
  2. 2.
    ACAS Clinical Advisory (1994) Carotid endarterectomy for patients with asymptomatic internal carotid artery stenosis. Stroke 25(12):2523–2524CrossRefGoogle Scholar
  3. 3.
    Executive Committee for the Asymptomatic Carotid Atherosclerosis study (2002) Endarterectomy for asymptomatic carotid stenosis. J Am Med Assoc 273:1421–1428Google Scholar
  4. 4.
    Nicolaides A, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM (2003) The asymptomatic carotid stenosis and risk of stroke study. Int Angiol 22(3):263–272PubMedGoogle Scholar
  5. 5.
    Zahalka A, Fenster A (2001) An automated segmentation method for three-dimensional carotid ultrasound images. Phys Med Biol 46:1321–1342PubMedCrossRefGoogle Scholar
  6. 6.
    Hamou A, El-Sakka M (2004) A novel segmentation technique for carotid ultrasound images. In: International conference on acoustic speech and signal processing ICASSP, vol 521, p 524Google Scholar
  7. 7.
    Abdel-Dayen AR, El.-Sakka MR (2004) A novel morphological-based carotid artery contour extraction. Can Conf Electr Comput Eng 4:1873–1876Google Scholar
  8. 8.
    Mao F, Gill J, Downey D, Fenster A (2000) Segmentation of carotid artery in ultrasound images: method development and evaluation technique. Med Phys 27(8):1–10CrossRefGoogle Scholar
  9. 9.
    Abolmaesumi P, Sirouspour MR, Salcudean SE (2000) Real-time extraction of carotid artery contours from ultrasound images. In: Proceedings of IEEE international conference on computer based medical systems, pp 181–186Google Scholar
  10. 10.
    Gill JD, Ladak HM, Steinman DA, Fenster A (2000) Segmentation of ulcerated plaque: a semi-automatic method for tracking the progression of carotid atherosclerosis. In: World congress on medical physics and biomedical engineering, pp 1–4Google Scholar
  11. 11.
    Delsanto S, Molinari F, Liboni W, Giustetto P, Patalamenti S, Suri JS (2006) User-independent plaque characterization and accurate IMT measurement of carotid artery wall using ultrasound. In: Proceedings of 28th annual international conference IEEE EMBS, pp 2404–2407Google Scholar
  12. 12.
    Loizou CP, Pattichis CS, Pantziaris M, Nicolaides AN (2007) An integrated system for the segmentation of atherosclerotic carotid plaque. IEEE Trans Inf Technol Biomed 11(6):661–667PubMedCrossRefGoogle Scholar
  13. 13.
    Guerrero J, Salcudean SE, McEwen SE, Masri JA (2007) Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans Med Imaging 26(8):1079–1090PubMedCrossRefGoogle Scholar
  14. 14.
    Golemati S, Stoitsis E, Sifakis G, Balkisas T, Nikita KS (2007) Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol 33(12):1918–1932PubMedCrossRefGoogle Scholar
  15. 15.
    Slabaugh G, Unal G, Wels M, Fang T, Rao B (2009) Statistical region-based segmentation of ultrasound images. Ultrasound Med Biol 35(5):781–795PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang X, McKay CR, Sonka M (1998) Tissue characterization in intravascular ultrasound images. IEEE Trans Med Imaging 17(6):889–899PubMedCrossRefGoogle Scholar
  17. 17.
    Cardinal MR, Meunier J, Soulez G, Thérasse E, Cloutier G (2003) Intravascular ultrasound image segmentation: a fast-marching method. In: Proceedings of MICCAI LNCS 2879, pp 432–439Google Scholar
  18. 18.
    Brusseau E, De Korte CL, Mastick F, Schaar J, Van der Steen AFW (2004) Fully automatic luminal contour segmentation in intracoronary ultrasound imaging – a statistical approach. IEEE Trans Med Imaging 23(5):554–566PubMedCrossRefGoogle Scholar
  19. 19.
    Olszewski ME, Wahle A, Vigmostad SC, Sonka M (2005) Multidimensional segmentation of coronary intravascular ultrasound images using knowledge-based methods. In: Proceedings of SPIE medical imaging: image processing, vol 5747, pp 496–504Google Scholar
  20. 20.
    Xu D, Hwang J-N, Yuan C (2001) Atherosclerotic plaque segmentation at human carotid artery based on multiple contrast weighting MR images. In: IEEE ICIP, pp 849–852Google Scholar
  21. 21.
    Adams GJ, Vick GW, Ballantyne CM, Insull W, Morrisett JD (2002) Estimation of carotid atherosclerotic plaque volume in vivo magnetic resonance images. In: Proceedings of EMBS/BMES conference, pp 1072–1073Google Scholar
  22. 22.
    Yang F, Holzapfel GA, Schulze-Bauer CAJ, Stollberger R, Thedens D, Bolinger L, Stolpen A, Sonka M (2003) Segmentation of wall and plaque in in-vitro vascular MR images. Int J Cardiovasc Imaging 19:419–428PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen LD (1991) On active contour models and balloons. Comput Vis Graph Image Process Image Underst 53(2):211–218Google Scholar
  24. 24.
    Williams D, Shah M (1992) A fast algorithm for active contour and curvature estimation. CVGIP Image Underst 55(1):14–26CrossRefGoogle Scholar
  25. 25.
    Lai KF, Chin RT (1995) Deformable contours-modeling and extraction. IEEE Trans PAMI 17(11):1084–1090CrossRefGoogle Scholar
  26. 26.
    Xu C, Prince J (1998) Generalized gradient vector flow external forces for active contours. Signal Process 71:131–139CrossRefGoogle Scholar
  27. 27.
    Loizou CP, Pattichis CS, Pantziaris M, Nicolaides AN (2005) Performance evaluation of active contour models for carotid plaque segmentation. In: EMBEC European medical and biological engineering conference IFMBE on biomedical engineering, Prague, Czech Republic, vol 11, issue 1, pp 1–6Google Scholar
  28. 28.
    A Philips Medical System Company (2001) Comparison of image clarity, SonoCT real-time compound imaging versus conventional 2D ultrasound imaging. ATL Ultrasound ReportGoogle Scholar
  29. 29.
    Kyriakou E, Pattichis MS, Christodoulou C, Pattichis CS, Kakkos S, Griffin M, Nicolaides A (2005) Ultrasound imaging in the analysis of carotid plaque morphology for the assessment of stroke. In: Suri JS, Yuan C, Wilson DL, Laxminarayan S (eds) Plaque imaging: pixel to molecular level. IOS Press, Washington, DC, pp 241–275Google Scholar
  30. 30.
    Elatrozy T, Nicolaides A, Tegos T, Zarka A, Griffin M, Sabetai M (1998) The effect of B-mode ultrasonic image standardization of the echodensity of symptomatic and asymptomatic carotid bifurcation plaque. Int Angiol 17(3):179–186PubMedGoogle Scholar
  31. 31.
    Loizou CP, Pattichis CS (2008) Despeckle filtering algorithms and software for ultrasound imaging. Synthesis lectures on algorithms and software for engineering. Morgan & Claypool, San Rafael, CAGoogle Scholar
  32. 32.
    Lee JS (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell PAMI-2(2):165–168CrossRefGoogle Scholar
  33. 33.
    Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M, Nicoliades A (2005) Despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Feroelectr Freq Control 52(2):1653–1669CrossRefGoogle Scholar
  34. 34.
    Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298PubMedCrossRefGoogle Scholar
  35. 35.
    Fleiss JL, Cohen J, Everitt BS (1969) Large sample standard errors of kappa and weighted kappa. Psychol Bull 72(5):323–327CrossRefGoogle Scholar
  36. 36.
    Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sensing 52(2):223–227Google Scholar
  37. 37.
    Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49PubMedCrossRefGoogle Scholar
  38. 38.
    Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2006) Quantitative quality evaluation of ultrasound imaging in the carotid artery. Med Biol Eng Comput 44(5):414–426PubMedCrossRefGoogle Scholar
  39. 39.
    Abd-Elmonien K, Youssef A-B, Kadah Y (2002) Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans Biomed Eng 49(9):997–1014CrossRefGoogle Scholar
  40. 40.
    Gil D, Hernandez A, Mauri J, Radeva P (2006) Statistical strategy for anisotropic adventitia modeling in IVUS. IEEE Trans Med Imaging 25(6):768–778PubMedCrossRefGoogle Scholar
  41. 41.
    Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A (2003) Texture based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging 22(7):902–912PubMedCrossRefGoogle Scholar
  42. 42.
    Kyriacou E, Pattichis CS, Pattichis MS, Loizou CP, Christodoulou C, Kakos S, Nicolaides A (2010) A review of non-invasive ultrasound imaging processing methods in the analysis of carotid plaque morphology for the assessment of stroke. IEEE Trans Inf Technol Biomed 14(4):1027–1038PubMedCrossRefGoogle Scholar
  43. 43.
    Loizou CP, Pantziaris M, Pattichis CS, Kyriakou E (2010) M-mode state-based identification in ultrasound videos of the common carotid artery. In: Proceedings of 4th international symposium on communications, control and signal processing ISCCSP, pp 1–6Google Scholar
  44. 44.
    Destrempes F, Meunier J, Giroux M-F, Soulez G, Cloutier G (2011) Segmentation of plaques in sequences of ultrasonic B-mode images of carotid arteries based on motion estimation and a Bayesian model. IEEE Trans Biomed Eng 58(8):2202–2210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceSchool of Sciences and Engineering, IntercollegeLimassolCyprus
  2. 2.The Cyprus Institute of Neurology and GeneticsNicosiaCyprus

Personalised recommendations