Skip to main content

Bat Molecular Phylogenetics: Past, Present, and Future Directions

  • Chapter
  • First Online:
Bat Evolution, Ecology, and Conservation

Abstract

With the development of techniques for the isolation, amplification, and sequencing of DNA, studies addressing phylogenetic relationships among bats moved in the 1980s and early 1990s from restriction fragment length polymorphisms and DNA hybridization to examination of changes at the level of individual nucleotides via DNA sequence analysis. Coinciding with these molecular advances were increases in computational capacity and the development of sophisticated analytical models of the nucleotide and amino acid substitution processes. Thus, molecular phylogenetics moved primarily from distance- and parsimony-based algorithms to complex optimality criterion, such as maximum likelihood and Bayesian phylogenetics. These advances helped to clarify our understanding of the evolutionary relationships and biogeographic history of bats as well as the evolution of echolocation and flight. We have now entered the age of phylogenomics, where phylogenetic datasets represent genome-scale variation. With the recent explosion in available data and the ever-expanding ability to inexpensively produce massive datasets for any organism, we now have the ability to extend phylogenomic approaches to non-model organisms such as bats, which have been historically neglected in studies of molecular evolution. Bats represent an extraordinary group characterized by evolutionary novelty (i.e., echolocation and powered flight) and adaptation (e.g., seven distinct feeding strategies within the family Phyllostomidae) to an extent arguably paralleled by no other group of mammals. As we move into the era of phylogenomics, it is time for bats to move to the forefront of the study of evolutionary novelty and adaptation, which for mammals has been dominated by rodents due to the mouse and rat models being so ubiquitous in all aspects of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Extavour CG, Groover A, Hodges SA, Hoekstra HE, Kramer EM, Monteiro A (2008) Are we there yet? Tracking the development of new model systems. Trends Ecol Evol 24:353–360

    CAS  Google Scholar 

  • Adcock GJ, Dennis ES, Easteal S, Huttley GA, Jermin LS, Peacock WJ, Thorne A (2001) Mitochondrial DNA sequences in ancient Australians: implications for modern human origins. Procs Natl Acad Sci USA 98:537–542

    Article  CAS  Google Scholar 

  • Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA 88:10317–10321

    Article  PubMed  CAS  Google Scholar 

  • Ammerman LK, Hillis DM (1992) A molecular test of bat relationships: monophyly or diphyly? Syst Biol 41:222–232

    Google Scholar 

  • Ammerman LK, Lee DN, Marie Tipps T (2012) First molecular phylogenetic insights into the evolution of free-tailed bats in the subfamily Molossinae (Molossidae, Chiroptera). J Mammal 93:12–28

    Article  Google Scholar 

  • Artyushin IV, Bannikova AA, Lebedev VS, Kruskop SV (2009) Mitochondrial DNA relationships among North Palearctic Eptesicus (Vespertilionidae, Chiroptera) and past hybridization between common serotine and Northern bat. Zootaxa 2262:40–52

    Google Scholar 

  • Baack EJ, Riesberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518

    Article  PubMed  CAS  Google Scholar 

  • Bachanek J, Postawa T (2010) Morphological evidence for hybridization in the sister species Myotis myotis and Myotis oxygnathus (Chiroptera: Vespertilionidae) in the Carpathian Basin. Acta Chiropterol 12:439–448

    Article  Google Scholar 

  • Baker RJ, Porter CA, Patton JC, Van Den Bussche RA (2000) Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occas Pap Tex Tech Univ Mus 202:i+1–16

    Google Scholar 

  • Baker RJ, Hoofer SR, Porter CA, Van Den Bussche RA (2003) Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occas Pap Tex Tech Univ Mus 230:i+1–32

    Google Scholar 

  • Bapteste E, O’Malley MA, Beiko RG, Ereshefsky M, Gogarten JP, Franklin-Hall L, Lapointe F-J, Dupre J, Dagan T, Boucher Y, Martin W (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34. doi:10.1186/1745-6150-4-34

    Article  PubMed  CAS  Google Scholar 

  • Baurain D, Brinkmann H, Philippe H (2006) Lack of resolution in the animal phylogeny: closely spaced cladogenesis or undetected systematic errors. Mol Bio Evol 24:6–9

    Article  CAS  Google Scholar 

  • Bennet S, Alexander LJ, Crozier RH, Mackinlay AG (1988) Are megabats flying primates? Contrary evidence from a mitochondrial DNA sequence. Aust J Biol Sci 41:327–332

    Google Scholar 

  • Berthier P, Excoffier L, Ruedi M (2006) Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc R Soc B Biol Sci 273:3101–3123

    Article  CAS  Google Scholar 

  • Bhatnagar KP (1988) Anatomy. In: Schmidt U, Greenhall AM (eds) Natural history of vampire bats. CRC Press, Boca Raton, FL

    Google Scholar 

  • Birney EC, Timm RM (1975) Dental ontogeny and adaptation in Diphylla ecaudata. J Mammal 56:204–207

    Article  PubMed  CAS  Google Scholar 

  • Bogdanowicz W, Van Den Bussche RA, Gajewska M, Postawa T, Harutyunyan M (2009) Ancient and contemporary DNA sheds light on the history of mouse-eared bats in Europe. Acta Chiropterol 11:289–305

    Article  Google Scholar 

  • Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21:439–446

    Article  PubMed  Google Scholar 

  • Briggs AW, Good JM, Green RE et al (2009) Targeted retrieval and analysis of five neandertal mtDNA genomes. Science 325:318–321

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, Philippe H (2008) Animal phylogeny and large-scale sequencing: progress and pitfalls. J Syst Evol 46:274–286

    Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224

    Article  PubMed  CAS  Google Scholar 

  • Carstens BC, Dewey TA (2010) Species delimitation using a combined coalescent and information-theoretic approach: an example from North American Myotis bats. Syst Biol 59:400–414

    Article  PubMed  Google Scholar 

  • Chen C-H, Cretekos CJ, Rasweiler IV, Beringer RR (2005) Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata. Evol Dev 7:140–141

    Article  Google Scholar 

  • Czaplewski NJ, Morgan GS, Mcleod SA (2008) Chiroptera. In: Janis CM, Connell GF, Uhen MD (eds) Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Davis JS, Nicolay CW, Williams SH (2010) A comparative study of incisor procumbency and mandibular morphology in vampire bats. J Morphol 271:853–862

    PubMed  Google Scholar 

  • de Bruyn M, Hoelzel AR, Carvalho GR, Hofreiter M (2011) Faunal histories from Holocene ancient DNA. Trends Ecol Evol 26:405–413

    Article  PubMed  Google Scholar 

  • Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2:e68

    Article  PubMed  CAS  Google Scholar 

  • Degnan JH, Rosenberg NA (2008) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340

    Article  Google Scholar 

  • Delpietro HA, Russo RG (2002) Observations of the common vampire bat (Desmodus rotundus) and the hairy-legged vampire bat (Diphylla ecaudata) in captivity. Mamm Biol 67:65–78

    Google Scholar 

  • Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:593–619

    Article  Google Scholar 

  • Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  CAS  Google Scholar 

  • Drummond AJ, Ho SYM, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:88

    Article  CAS  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Eaver ES, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–750

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–9

    Article  PubMed  CAS  Google Scholar 

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886

    Article  PubMed  CAS  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Gnerre S, Lander ES, Lindblad-Toh K, Jaffe DB (2009) Assisted assembly: how to improve a de novo genome assembly by using related species. Genome Biol 10:R88. doi:10.1186/gb-2009-10-8-r88

    Article  PubMed  CAS  Google Scholar 

  • Golenberg EM, Giannassi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990) Chloroplast DNA from a Miocene Magnolia species. Nature 344:656–658

    Article  PubMed  CAS  Google Scholar 

  • Greenwood AD, Castresana J, Feldmaier-Fuchs G, Pääbo S (2001) A molecular phylogeny of two extinct sloths. Mol Phylogenet Evol 18:94–103

    Article  PubMed  CAS  Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 88:1–52

    Google Scholar 

  • Griffiths TA, Criley BB (1989) Comparative lingual anatomy of the bats Desmodus rotundus and Lonchophylla robusta (Chiroptera: Phyllostomidae). J Mammal 70:608–613

    Article  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  PubMed  CAS  Google Scholar 

  • Herrera LGM, del Rio CM (1998) Pollen digestion by New World bats: effects of processing time and feeding habits. Ecology 79:2828–2838

    Article  Google Scholar 

  • Ho SY, Jermiin L (2004) Tracing the decay of historical signal in biological sequence data. Syst Biol 53:623–637

    Article  PubMed  Google Scholar 

  • Hockman D, Cretekos CJ, Mason MK, Behringer RR, Jacobs DS, Illing N (2008) A second wave of Sonic hedgehog expression during the development of the bat limb. Proc Natl Acad Sci USA 105:16982–16987

    Article  PubMed  CAS  Google Scholar 

  • Hoffman FG, Owen JG, Baker RJ (2003) mtDNA perspective of chromosomal diversification and hybridization in Peters’ tent-making bat (Uroderma bilobatum: Phyllostomidae). Mol Ecol 12:2981–2993

    Article  CAS  Google Scholar 

  • Holder MT, Anderson JA, Holloway AK (2001) Difficulties in detecting hybridization. Syst Biol 50:978–982

    Article  PubMed  CAS  Google Scholar 

  • Holland BR, Benthin S, Lockhart PJ, Moulton V, Huber KT (2008) Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evol Biol 8:202. doi:10.1186/1471-2148-8-202

    Article  PubMed  CAS  Google Scholar 

  • Hoofer SR, Van Den Bussche RA (2003) Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterol 5((supplement)):1–63

    Article  Google Scholar 

  • Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC (2004) Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium. Genome Biol 5:R88

    Article  PubMed  Google Scholar 

  • Hughes JS, Longhorn J, Papadopoulou A, Theodorides K, de Riva A, Mejia-Chang M, Foster PG, Volger AP (2006) Dense taxonomic sampling and its application for molecular systematics of the Coleoptera (Beetles). Mol Biol Evol 23:268–278

    Article  PubMed  Google Scholar 

  • Hutcheon JM, Kirsch JAW (2006) A moveable face: deconstructing the Microchiroptera and a new classification of extant bats. Acta Chiropterol 8:1–10

    Article  Google Scholar 

  • Hutcheon JM, Kirsch JAW, Pettigrew JD (1998) Base-compositional biases and the bat problem. III. The question of microchiropteran monophyly. Philos Trans R Soc Lond B Biol Sci 353:607–617

    Article  PubMed  CAS  Google Scholar 

  • Joly S, McLenachan PA, Lockhart PJ (2009) A statistical approach for distinguishing hybridization from incomplete lineage sorting. Am Nat 17:E54–E70

    Article  Google Scholar 

  • Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156

    Article  PubMed  Google Scholar 

  • Jones KE, Purvis A, MacLarnon A, Binida-Emonds ORP, Simmons NB (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev 77:223–259

    Article  PubMed  Google Scholar 

  • Kirsch JAW (1996) Bats are monophyletic; megabats are monophyletic; but are microbats also? Bat Res News 33:62

    Google Scholar 

  • Kirsch JAW, Hutcheon JM (1997) Further on the possibility that microchiropterans are paraphyletic. Bat Res News 37:138

    Google Scholar 

  • Kirsch JAW, Pettigrew JD (1998) Base-compositional biases and the bat problem. II. DNA-hybridization trees based on AT- and GC-enriched tracers. Philos Trans R Soc Lond B Biol Sci 265:389–397

    Google Scholar 

  • Knapp M, Hofreiter M (2010) Next generation sequencing of ancient DNA: requirements, strategies, and perspectives. Genes 227–243

    Google Scholar 

  • Knowles LL (2009) Estimating species trees: methods of phylogenetic analysis when there is incongruence across genes. Syst Biol 58:367–463

    Article  Google Scholar 

  • Krauss V, Thummler C, Georgi F, Lehmann J, Stadler PF, Eisenhardt C (2008) Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. Mol Biol Evol 25:821–830

    Article  PubMed  CAS  Google Scholar 

  • Kubatko LS, Gibbs H, Bloomquist EW (2011) Inferring species-level phylogenies and taxonomic distinctiveness using multilocus data is Sistrurus rattlesnakes. Syst Biol 60:393–409. doi:10.1093/sysbio/syr011

    Article  PubMed  Google Scholar 

  • Lack JB, Van Den Bussche RA (2010) Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. J Mammal 91:1435–1448

    Article  Google Scholar 

  • Lack JB, Roehrs ZP, Stanley CE Jr, Ruedi M, Van Den Bussche RA (2010) Molecular phylogenetics of Myotis suggests Familial-level divergence of the genus Cistugo (Chiroptera). J Mammal 91:976–992

    Article  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Larsen PA, Marchan-Rivadeneira MR, Baker RJ (2010) Natural hybridization generates mammalian lineage with species characteristics. Proc Natl Acad Sci USA 107:11447–11452

    Article  PubMed  CAS  Google Scholar 

  • Li S, Nosenko T, Hacklett JD, Bhattacharva D (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in Chromalveolates. Mol Biol Evol 23:663–674

    Article  PubMed  Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Zhang S (2007) Accelerated FoxP2 evolution in echolocating bats. PLoS One 9:e900. doi:10.1371/journal. pone.0000900

    Article  CAS  Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zhang S (2008) The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA 105:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-H, Penny D (2001) Implications for bat evolution from two new complete mitochondrial genomes. Mol Biol Evol 18:684–688

    Article  PubMed  CAS  Google Scholar 

  • Linnaeus C (1758) Systema nature, 10th edn. Laurentii Salvii, Stockholm

    Google Scholar 

  • Liu L, Edwards SV (2009) Phylogenetic analysis in the anomaly zone. Syst Biol 58:452–460

    Article  PubMed  Google Scholar 

  • Liu L, Pearl DK, Brumfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091

    Article  PubMed  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    Article  PubMed  Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    Article  PubMed  CAS  Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118

    Article  PubMed  CAS  Google Scholar 

  • Maricic T, Whitten M, Pääbo S (2010) Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One 5:e14004. doi:10.1371/journal.pone.0014004

    Article  PubMed  CAS  Google Scholar 

  • McCormack JE, Huang H, Knowles LL (2009) Breaking them down and building them up: evaluating the accuracy of maximum-likelihood estimates of species trees. Syst Biol 58:501–508

    Article  PubMed  Google Scholar 

  • Metzker ML (2009) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  • Millar CD, Huynen L, Subramanian S, Mohandesan E, Lambert DM (2008) New developments in ancient genomics. Trends Ecol Evol 23:386–393

    Article  PubMed  Google Scholar 

  • Miller GS Jr (1907) The families and genera of bats. Bull US Natl Mus 57:1–282

    Google Scholar 

  • Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer ME, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Mindell DP, Dick CW, Baker RJ (1991) Phylogenetic relationships among megabats, microbats, and primates. Proc Natl Acad Sci USA 87:10322–10326

    Article  Google Scholar 

  • Mitchell GC, Tigner JR (1970) The route of ingested blood in the vampire bat Desmodus rotundus. J Mammal 51:814–817

    Article  Google Scholar 

  • Murphy WJ, Eizirk E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origin of placental mammals. Nature 409:614–618

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Bouady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639

    Article  PubMed  CAS  Google Scholar 

  • Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds) Evolutionary processes and theory. Academic, New York, NY

    Google Scholar 

  • Ng SB, Turner EH, Robertson PD, Flygare SD, Bingham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  PubMed  CAS  Google Scholar 

  • Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol Evol 16:358–364

    Article  PubMed  Google Scholar 

  • Norberg UM, Kunz TH, Steffensen JF, Winter Y, von Helversen O (1993) The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory. J Exp Biol 182:207–227

    PubMed  CAS  Google Scholar 

  • Olsen G (1987) Earliest phylogenetic branching: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harb Symp Quant Biol 52:825–837

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Depres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD (1994) Flying DNA. Curr Biol 4:277–280

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D (2004) Phylogenomics of Eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21:1740–1752

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005a) Phylogenomics. Annu Rev Ecol Syst 36:541–562

    Article  Google Scholar 

  • Philippe H, Zhou Y, Brinkmann H, Rodrique N, Delsuc F (2005b) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50

    Article  PubMed  CAS  Google Scholar 

  • Pisani D, Cotton JA, McInerny JO (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24:1752–1760

    Article  PubMed  CAS  Google Scholar 

  • Poinar HN, Poinar GO Jr, Canno RJ (1993) DNA from an extinct plant. Nature 363:677

    Article  Google Scholar 

  • Poinar H, Kuch M, McDonald G, Martin P, Pääbo S (2003) Nuclear gene sequences from a late Pleistocene sloth coprolite. Curr Biol 13:1150–1152

    Article  PubMed  CAS  Google Scholar 

  • Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104:1895–1900

    Article  PubMed  CAS  Google Scholar 

  • Puechmaille SJ, Mathy G, Petit EJ (2007) Good DNA from bat droppings. Acta Chiropterol 9:269–276

    Article  Google Scholar 

  • Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–852

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A (2000) Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399

    Article  PubMed  CAS  Google Scholar 

  • Ray R, Capecchi M (2008) An examination of the chiropteran HoxD locus from an evolutionary perspective. Evol Dev 10:657–670

    Article  PubMed  CAS  Google Scholar 

  • Ray DA, Pagan HJT, Thompson ML, Stevens RD (2007) Bats with hATs: evidence for recent DNA transposon activity in the genus Myotis. Mol Biol Evol 24:632–639

    Article  PubMed  CAS  Google Scholar 

  • Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig N (2008) Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 18:717–728

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Rodriquez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H (2007) Detecting and overcoming systematic error in genome-scale phylogenies. Syst Biol 56:389–399

    Article  CAS  Google Scholar 

  • Roehrs ZP, Lack JB, Van Den Bussche RA (2010) Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. J Mammal 91:1073–1092

    Article  Google Scholar 

  • Roehrs ZP, Lack JB, Van Den Bussche RA (2011) A molecular phylogenetic reevaluation of the Tribe Nycticeiini (Chiroptera: Vespertilionidae). Acta Chiropterol 13:17–31

    Article  Google Scholar 

  • Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol 22:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Kruger D, Carroll SB (2005) Animal evolution and the molecular signature of radiations compressed in time. Science 310:1933–1938

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57:1465–1477

    PubMed  Google Scholar 

  • Sanderson MJ, McMahon MM, Steel M (2010) Phylogenomics with incomplete taxon coverage: the limits to inference. BMC Evol Biol 10:1–13

    Article  Google Scholar 

  • Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657

    Article  PubMed  CAS  Google Scholar 

  • Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nat Biotechnol 30:326–328

    Article  PubMed  CAS  Google Scholar 

  • Schondube JE, Herrera LGM, del Rio CM (2001) Diet and evolution of digestion and renal function in phyllostomid bats. Zoology 104:59–73

    Article  PubMed  CAS  Google Scholar 

  • Schwenk K, Brede N, Streit B (2008) Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos Trans R Soc Lond B Biol Sci 363:2805–2811

    Article  PubMed  Google Scholar 

  • Sears KE, Behringer RR, Rasweiler JJ IV, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA 103:6581–6586

    Article  PubMed  CAS  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Shen YY, Liu J, Irwin DM, Zhang YP (2010) Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order Chiroptera). PLoS One 5:e8838

    Article  PubMed  CAS  Google Scholar 

  • Simmons NB (1998) A reappraisal of interfamilial relationships of bats. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the world: a taxonomic and geographic reference. The John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Sjolander K (2010) Getting started in functional phylogenomics. PLoS Comput Biol 6:e1000621

    Article  PubMed  CAS  Google Scholar 

  • Slowinski JB, Page RD (1999) How should species phylogenies be inferred from sequence data? Syst Biol 48:814–825

    Article  PubMed  CAS  Google Scholar 

  • Smith JD, Madkour G (1980) Penial morphology and the question of chiropteran phylogeny. In: Wilson DE, Gardner AL (eds) Proceedings of the fifth international bat research conference. Texas Tech Press, Lubbock, TX

    Google Scholar 

  • Stanhope MJ, Czelusniak J, Si J-S, Nickerson J, Goodman M (1992) A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol Phylogenet Evol 1:148–160

    Article  PubMed  CAS  Google Scholar 

  • Syvanen M (1994) Horizontal gene transfer: evidence and possible consequences. Annu Rev Genet 28:237–261

    Article  PubMed  CAS  Google Scholar 

  • Sztencel-Jablonka A, Bogdanowicz W (in review) Population genetics study of common (Pipistrellus pipistrellus) and soprano (P. pygmaeus) pipistrelle bats from Central Europe suggests interspecific hybridization. Can J Zoo

    Google Scholar 

  • Teeling EC (2009) Hear, hear: the convergent evolution of echolocation in bats? Trends Ecol Evol 24:351–354

    Article  PubMed  Google Scholar 

  • Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188–192

    Article  PubMed  CAS  Google Scholar 

  • Teeling EC, Madsen O, Van Den Bussche RA, de Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci USA 99:1431–1436

    Article  PubMed  CAS  Google Scholar 

  • Teeling EC, Madsen O, Murphy WJ, Spring MS, O’Brien SJ (2003) Nuclear gene sequences confirm an ancient link between New Zealand’s short-tailed bat and South American noctilionoid bats. Mol Phylogenet Evol 28:308–319

    Article  PubMed  CAS  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    Article  PubMed  CAS  Google Scholar 

  • The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  Google Scholar 

  • Van Den Bussche RA, Hoofer SR (2000) Further evidence for inclusion of the New Zealand short-tailed bat (Mystacina tuberculata) within Noctilionoidea. J Mammal 73:29–42

    Article  Google Scholar 

  • Van Den Bussche RA, Hoofer SR (2004) Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J Mammal 85:321–330

    Article  Google Scholar 

  • Van Den Bussche RA, Baker RJ, Huelsenbeck JP, Hillis DM (1998) Base compositional bias and phylogenetic analyses: a test of the “Flying DNA” hypothesis. Mol Phylogenet Evol 13:408–416

    Article  Google Scholar 

  • Voigt CC, Speakman JR (2007) Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Funct Ecol 21:913–921

    Article  Google Scholar 

  • Volleth M, Heller K-G (1994) Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. J Zool Syst Evo Res 32:11–34

    Article  Google Scholar 

  • Wang Z, Dong D, Ru B, Young RL, Han N, Guo T, Zhang S (2010) Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation. BMC Genomics 11:619

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Weatherbee SD, Behringer RR, Rasweiler JJ IV, Niswander LA (2006) Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA 103:15103–15107

    Article  PubMed  CAS  Google Scholar 

  • Wetterer AL, Rockman MV, Simmons NB (2000) Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bull Am Mus Nat Hist 248:1–200

    Article  Google Scholar 

  • Willerslev E, Cooper A (2007) Ancient DNA. Proc R Soc B: Biol Sci 272:3–16

    Article  CAS  Google Scholar 

  • Wimsatt WA, Guerriere A (1962) Observations on the feeding capacities and excretory functions of captive vampire bats. J Mammal 43:17–27

    Article  Google Scholar 

  • Winter Y (1998) Energetic costs of hovering flight in a nectar-feeding bat measured with fast-response respirometry. J Comp Physiol B 168:434–444

    Article  PubMed  CAS  Google Scholar 

  • Winter Y, von Helversen O (2003) Operational tongue-length in phyllostomid nectar-feeding bats. J Mammal 84:886–896

    Article  Google Scholar 

  • Winter Y, Voigt CC, von Helversen O (1998) Gas-exchange during hovering flight in nectar-feeding bat Glossophaga soricina. J Exp Biol 201:237–244

    PubMed  CAS  Google Scholar 

  • Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA 107:9264–9269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Van Den Bussche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Den Bussche, R.A., Lack, J.B. (2013). Bat Molecular Phylogenetics: Past, Present, and Future Directions. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_6

Download citation

Publish with us

Policies and ethics