Skip to main content

Ionic Liquids in Gas Sensors

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Room-temperature ionic liquids (RTILs) are a unique class of compounds containing organic cations and anions, which melt at or close to room temperature, and thus they are called as room-temperature molten salts. Present chapter describes these compounds and analyzes advantages of ionic liquids for application in gas sensors of various types. Discussion on shortcomings of RTILs-based gas sensors is also presented. Chapter includes 4 figures, 2 Tables and 63 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15:309–321

    Article  CAS  Google Scholar 

  • AlNashef IM, Leonard ML, Matthews MA, Weidner JW (2002) Superoxide electrochemistry in an ionic liquid. Ind Eng Chem Res 41:4475–4478

    Article  CAS  Google Scholar 

  • Anastas PT (2007) Introduction: green chemistry. Chem Rev 107:2167–2168

    Article  Google Scholar 

  • Anderson JL, Armstrong DW (2003) High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem 75:4851–4858

    Article  CAS  Google Scholar 

  • Baker GA, Baker SN, Pandey S, Bright FV (2005) An analytical view of ionic liquids. Analyst 130:800–808

    Article  CAS  Google Scholar 

  • Bowlas CJ, Bruce DW, Seddon KR (1996) Liquid-crystalline ionic liquids. Chem Commun 1996(14):1625–1626

    Article  Google Scholar 

  • Broder TL, Silvester DS, Aldous L, Hardacre C, Compton RG (2007) Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2]. J Phys Chem B 111:7778–7785

    Article  CAS  Google Scholar 

  • Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG (2003) Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium is((trifluoromethyl)sulfonyl)imide: One-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide. J Phys Chem A 107:8872–8878

    Article  CAS  Google Scholar 

  • Buzzeo MC, Evans RG, Compton RG (2004a) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chemphyschem 5:1106–1120

    Article  CAS  Google Scholar 

  • Buzzeo MC, Giovanelli D, Lawrence NS, Hardacre C, Seddon KR, Compton RG (2004b) Elucidation of the electrochemical oxidation pathway of ammonia in dimethylformamide and the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Electroanalysis 16(11):888–896

    Article  CAS  Google Scholar 

  • Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG (2004c) Kinetic analysis of the reaction between electrogenerated superoxide and carbon dioxide in the room temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 108:3947–3954

    Article  CAS  Google Scholar 

  • Buzzeo M, Hardacre C, Compton RG (2004d) Use of room temperature ionic liquids in gas sensor design. Anal Chem 76:4583–4588

    Article  CAS  Google Scholar 

  • Cai Q, Xian YZ, Li H, Zhang YM, Tang J, Jin LT (2001) Studies on a sulfur dioxide electrochemical sensor with ionic liquid as electrolyte. Huadong Shifan Daxue Xuebao, Ziran Kexueban 2001(3):57–60

    Google Scholar 

  • Demus D, Goodby J, Gray GW, Spiess H-W, Vill V (eds) (1998) Handbook of liquid crystals. Wiley, Weinheim, Vol. 1, Chap. 2, pp. 18–19

    Google Scholar 

  • Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, Bontempelli G (2012) An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12:153–158

    Article  CAS  Google Scholar 

  • Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398

    Article  CAS  Google Scholar 

  • Fletcher KA, Pandey S, Storey IK, Hendricks AE, Pandey S (2002) Selective fluorescence quenching of polycyclic aromatic hydrocarbons by nitromethane within room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Anal Chim Acta 453:89–96

    Article  CAS  Google Scholar 

  • Forzani ES, Lu D, Leright MJ, Aguilar AD, Tsow F, Iglesias RA, Zhang Q, Lu J, Li J, Tao N (2009) A hybrid electrochemical-colorimetric sensing platform for detection of explosives. J Am Chem Soc 131:1390–1391

    Article  CAS  Google Scholar 

  • Giovanelli D, Buzzeo MC, Lawrence NS, Hardacre C, Seddon KR, Compton RG (2004) Determination of ammonia based on the electro-oxidation of hydroquinone in dimethylformamide or in the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Talanta 62:904–911

    Article  CAS  Google Scholar 

  • Goubaidoulline I, Vidrich G, Johannsmann D (2005) Organic vapor sensing with ionic liquids entrapped in alumina nanopores on quartz crystal resonators. Anal Chem 77:615–619

    Article  CAS  Google Scholar 

  • Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750

    Article  CAS  Google Scholar 

  • Huang X-J, Silvester DS, Streeter I, Aldous L, Hardacre C, Compton RG (2008) Electroreduction of chlorine gas at platinum electrodes in several room temperature ionic liquids: evidence of strong adsorption on the electrode surface revealed by unusual voltammetry in which currents decrease with increasing voltage scan rates. J Phys Chem C 112:19477–19483

    Article  CAS  Google Scholar 

  • Huang XJ, Aldous L, O’Mahony AM, del Campo FJ, Compton RG (2010) Toward membrane-free amperometric gas sensors: a microelectrode array approach. Anal Chem 82:5238–5245

    Article  CAS  Google Scholar 

  • Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3(4):156–164

    Article  CAS  Google Scholar 

  • Jiang YY, Zhou Z, Jiao Z, Li L, Wu YT, Zhang ZB (2007) SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 111:5058–5061

    Article  CAS  Google Scholar 

  • Jin X, Yu L, Garcia D, Ren RX, Zeng X (2006) Ionic liquid high temperature gas sensor array. Anal Chem 78:6980–6989

    Article  CAS  Google Scholar 

  • Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M (2007) Survey of solvation and rotational dynamics of Coumarin 153 in a broad range of ionic liquids and comparisons to conventional solvents. J Phys Chem B 111:7291–7302

    Article  CAS  Google Scholar 

  • Kou Y, Xiong W, Tao G, Liu H, Wang T (2006) Absorption and capture of methane into ionic liquid. J Nat Gas Chem 15:282–286

    Article  CAS  Google Scholar 

  • Kroon MC, Buijs W, Peters CJ, Witkamp GJ (2007) Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta 465(1–2):40–47

    Article  CAS  Google Scholar 

  • Lee YG, Chou TC (2004) Ionic liquid ethanol sensor. Biosens Bioelectron 20(1):33–40

    Article  CAS  Google Scholar 

  • Liang C, Yuan CY, Warmack RJ, Barnes CE, Dai S (2002) Ionic liquids: a new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance. Anal Chem 74:2172–2176

    Article  CAS  Google Scholar 

  • Mank M, Stahl B, Boehm G (2004) 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules. Anal Chem 76:2938–2950

    Article  CAS  Google Scholar 

  • Mantz AR, Trulove PC (2003) Physicochemical properties of ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley, Berlin, pp 75–143

    Google Scholar 

  • O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) The electrochemical reduction of hydrogen sulfide on platinum in several room temperature ionic liquids. J Phys Chem C 112:7725–7730

    Article  Google Scholar 

  • Oter O, Ertekin K, Topkaya D, Alp A (2006a) Room temperature ionic liquids as optical sensor matrix materials for gaseous and dissolved CO2. Sens Actuators B Chem 117:295–301

    Article  CAS  Google Scholar 

  • Oter O, Ertekin K, Topkaya D, Alp S (2006b) Emission-based optical carbon dioxide sensing with HPTS in green chemistry reagents: room-temperature ionic liquids. Anal Bioanal Chem 386:1225–1234

    Article  CAS  Google Scholar 

  • Oter O, Ertekin K, Derinkuyu S (2008) Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. Talanta 76:557–563

    Article  CAS  Google Scholar 

  • Oter O, Ertekin K, Derinkuyu S (2009) Photophysical and optical oxygen sensing properties of tris(bipyridine)ruthenium(II) in ionic liquid modified sol–gel matrix. Mater Chem Phys 113:322–328

    Article  CAS  Google Scholar 

  • Peng JF, Liu JF, Hu XL, Jiang GB (2007) Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J Chromatogr A 1139:165–170

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  • Qi S, Cui S, Cheng Y, Chen X, Hu Z (2006) Rapid separation and determination of aconitine alkaloids in traditional Chinese herbs by capillary electrophoresis using 1-butyl-3-methylimidazoium-based ionic liquid as running electrolyte. Biomed Chromatogr 20:294–300

    Article  CAS  Google Scholar 

  • Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG (2008) Voltammetric characterization of the ferrocene|ferrocenium and cobaltocenium|cobaltocene redox couples in RTILs. J Phys Chem C 112:2729–2735

    Article  CAS  Google Scholar 

  • Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD (2002) Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun 2002:1370–1371

    Article  Google Scholar 

  • Seddon KR (1997) Ionic liquids for clean technology. J Chem Tech Biotechnol 68:315–316

    Article  Google Scholar 

  • Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287

    Article  CAS  Google Scholar 

  • Seddon KR, Stark A, Torres MJ (2002) Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. ACS Symp Ser 819:34–49

    Article  CAS  Google Scholar 

  • Seyama M, Iwasaki Y, Tate A, Sugimoto I (2006) Room-temperature ionic-liquid-incorporated plasma-deposited thin films for discriminative alcohol-vapor sensing. Chem Mater 18(11):2656–2662

    Article  CAS  Google Scholar 

  • Silvester DS, Compton RG (2006) Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z Phys Chem (N F) 220:1247–1274

    Article  CAS  Google Scholar 

  • Silvester DS, Ward KR, Aldous L, Hardacre C, Compton RG (2008a) The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents. J Electroanal Chem 618:53–60

    Article  CAS  Google Scholar 

  • Silvester DS, Rogers EI, Compton RG, McKenzie KJ, Ryder KS, Endres F, MacFarlane D, Abbott AP (2008b) Reference electrodes for use in room-temperature ionic liquids. In: Endres F, MacFarlane DR, Abbot A (eds) Electrodeposition from ionic liquids. Wiley, Weinheim, pp 296–309

    Google Scholar 

  • Silvester DS (2011) Recent advances in the use of ionic liquids for electrochemical sensing. Analyst 136:4871–4882

    Article  CAS  Google Scholar 

  • Singh VV, Nigam AK, Batra A, Boopathi M, Singh B, Vijayaraghavan R (2012) Applications of ionic liquids in electrochemical sensors and biosensors. Int J Electrochem 2012:165683

    Google Scholar 

  • Stetter JR, Korotcenkov G, Zeng X, Liu Y, Tang Y (2011) Electrochemical gas sensors: fundamentals, fabrication and parameters. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies, vol 5, Electrochemical and optical sensors. Momentum Press, New York, pp 1–89

    Google Scholar 

  • Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    Article  CAS  Google Scholar 

  • Wang R, Okajima T, Kitamura F, Ohsaka T (2004) A novel amperometric O2 gas sensor based on supported room-temperature ionic liquid porous polyethylene membrane-coated electrodes. Electroanalysis 16:66–72

    Article  Google Scholar 

  • Wang Z, Lin P, Baker GA, Stetter J, Zeng X (2011) Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. Anal Chem 83:7066–7073

    Article  CAS  Google Scholar 

  • Wasserschied P, Welton T (2003) Ionic liquids in synthesis. Wiley, Weinheim

    Google Scholar 

  • Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126–135

    Article  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  • Xiong SQ, Wei Y, Guo Z, Chen X, Wang J, Liu JH, Huang XJ (2011) Toward membrane-free amperometric gas sensors: an ionic liquid–nanoparticle composite approach. J Phys Chem C 115:17471–17478

    Article  CAS  Google Scholar 

  • Yu L, Diego G, Ren XR, Zeng X (2005) Ionic liquid high temperature gas sensors. Chem Commun 2005:2277–2279

    Article  Google Scholar 

  • Yu L, Jin X, Zeng X (2008) Methane interactions with polyaniline/butylmethylimidazolium camphorsulfonate ionic liquid composite. Langmuir 24:11631–11636

    Article  CAS  Google Scholar 

  • Zevenbergen MAG, Wouters D, Dam VAT, Brongersma SH, Crego-Calama M (2011) Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Anal Chem 83:6300–6307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Ionic Liquids in Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_7

Download citation

Publish with us

Policies and ethics