Skip to main content

Photonic Crystals

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4063 Accesses

Abstract

Application of photonic crystals (PhCs) is a new direction in gas sensor design. PhCs can consist of periodic arrangements of dielectric materials with different refractive indexes, which can be divided into one-dimensional PhC, two-dimensional PhC and three-dimensional PhC (namely, 1D PhC, 2D PhC, 3D PhC) according to the structures. Present chapter describes above mentioned materials and analyzes prospects of their application in gas sensors. Disadvantages of photonic crystals, which can limit their application in gas sensors, are being discussed as well. Chapter includes 6 figures and 57 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Ishikura N, Sasaki H, Baba T (2010) Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping. IEEE J Sel Top Quantum Electron 16(1):192–199

    Article  CAS  Google Scholar 

  • Alam MS, Saitoh K, Koshiba M (2005) High group birefringence in air–core photonic bandgap fibers. Opt Lett 30:824–826

    Article  Google Scholar 

  • Antkowiak M, Kotynski R, Nasilowski T, Lesiak P, Wojcik J, Urbanczyk W, Berghmans F, Thienpont H (2005) Phase and group modal birefringence of triple-defect photonic crystal fibres. J Optic Pure Appl Optic 7:763–766

    Article  Google Scholar 

  • Awad H, Hasan I, Mnaymneh K, Majid S, Hall TJ, Mnaymneh K, Andonovic I (2010) Wireless enabled multi gas sensor system based on photonic crystals. In: Berghmans F, Mignani AG, van Hoof CA (eds) Optical sensing and detection. Proc. SPIE 7726, 77260K, Brussels

    Google Scholar 

  • Barclay PE, Srinivasan K, Borselli M, Painter O (2004) Efficient input and output fiber coupling to a photonic crystal waveguide. Opt Lett 29(7):697–699

    Article  Google Scholar 

  • Beiu RM, Beiu V (2008) Fiber optical mechanical sensor based on a triangular-lattice photonic crystal. In: Proceedings of IEEE Photonics Global, Singapore, Vols. 1–2, pp. 183–186

    Google Scholar 

  • Boersma A, Bourghoorn M, Saalmik M (2011) Imprinted photonic crystal chemical sensors. Procedia Eng 25:27–30

    Article  CAS  Google Scholar 

  • Bogaerts W, Wiaux V, Taillaert D, Beckx S, Luyssaert B, Bienstman P, Baets R (2002) Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography. IEEE J Sel Top Quantum Electron 8(4):928–934

    Article  CAS  Google Scholar 

  • Cheng SC, Wu JN, Yang TJ, Hsieh W-F (2009) Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir. Phys Rev A 79(1):013801

    Article  Google Scholar 

  • Colodrero S, Ocana M, Gonzalez AR, Miguez H (2008) Response of nanoparticle-based one-dimensional photonic crystal to ambient vapor pressure. Langmuir 24(16):9135–9139

    Article  CAS  Google Scholar 

  • Delphine MM, Eric C, Damien B, Guillaume M, Laurent V (2008) Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime. Opt Eng 47(1):014602

    Article  Google Scholar 

  • Descrovi E, Frascella F, Sciacca B, Geobaldo F, Dominici L, Michelotti F (2007) Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Appl Phys Lett 91(24):241109

    Article  Google Scholar 

  • Fini JM (2004) Microstructure fibres for optical sensing in gases and liquids. Meas Sci Technol 15:1120–1128

    Article  CAS  Google Scholar 

  • Frazao O, Santos JL, Araujo FM, Ferreira LA (2008) Optical sensing with photonic crystal fibers. Laser Photon Rev 2(6):449–459

    Article  Google Scholar 

  • Fujisawa T, Koshiba M (2006) Analysis of photonic crystal waveguide gratings with coupling-mode theory and finite-element method. Appl Opt 45(17):4114–4121

    Article  Google Scholar 

  • García-Rupérez J, Toccafondo V, Banuls MJ, Castelló JG, Griol A, Peransi-Llopis S, Maquieira A (2010) Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow light regime. Opt Express 18(23):24276–24286

    Article  Google Scholar 

  • Hasek T, Kurt H, Citrin DS, Koch M (2007) A fluid sensor based on a sub-terahertz photonic crystal waveguide. In: Adibi A, Lin S-Y, Scherer A (eds) Photonic crystal materials and devices. Proceedings of SPIE 6480, 64801I, San Jose, CA

    Google Scholar 

  • Hidalgo N, Calvo ME, Miguez H (2009) Mesostructured thin films as responsive optical coatings of photonic crystals. Small 5(20):2309–2315

    Article  CAS  Google Scholar 

  • Hidalgo N, Calvo ME, Colodrero S, Miguez H (2010) Porous one-dimensional photonic crystal coatings for gas detection. IEEE Sensors J 10(7):1206–1212

    Article  CAS  Google Scholar 

  • Hoo YL, Jin W, Ho HL, Wang DN, Windeler RS (2002) Evanescent-wave gas sensing using microstructure fiber. Opt Eng 41:8–9

    Article  Google Scholar 

  • Hoo YL, Jin W, Shi C, Ho HL, Wang DN, Ruan SC (2003) Design and modeling of a photonic crystal fiber gas sensor. Appl Opt 42:3509–3515

    Article  CAS  Google Scholar 

  • Hu M, Wang C-Y, Li Y, Chai L, Kondrat’ev YN, Sibilia C, Zheltikov AM (2004) An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field. Appl Phys B Laser Optic 79:805–809

    Article  CAS  Google Scholar 

  • Jamois C, Wehrspohn R, Schilling J, Muller F, Hillebrand R, Hergert W (2002) Silicon-based PhC slabs: two concepts. IEEE J Sel Top Quantum Electron 38(7):805–810

    Article  CAS  Google Scholar 

  • Jensen KH, Alam MN, Scherer B, Lambrecht A, Mortensen NA (2008) Slow-light enhanced light-matter interactions with applications to gas sensing. Opt Commun 281(21):5335–5339

    Article  CAS  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered physics dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  CAS  Google Scholar 

  • Kerbage C, Eggleton B, Westbrook P, Windeler R (2000) Experimental and scalar beam propagation analysis of an air–silica microstructure fiber. Opt Express 7:113–122

    Article  CAS  Google Scholar 

  • Kosaka H, Kawashima A, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S (1999) Self-collimating phenomena in photonic crystals. Appl Phys Lett 74:1212–1214

    Article  CAS  Google Scholar 

  • Kosmidou EP, Kriezis EE, Tsiboukis TD (2005) FDTD analysis of photonic crystal defect layers filled with liquid crystals. Opt Quantum Electron 37(1):149–160

    Article  Google Scholar 

  • Lambrecht A, Hartwig S, Schweizer SL, Wehrspohn RB (2007) Miniature infrared gas sensors using photonic crystals. Proc SPIE 6480:64800D

    Article  Google Scholar 

  • Lee B, Roh S, Park J (2009) Current status of micro- and nano-structured optical fiber sensors. Opt Fiber Technol 15:209–221

    Article  CAS  Google Scholar 

  • Li S-G, Liu S-Y, Song Z-Y, Han Y, Cheng T-L, Zhou G-Y, Hou L-T (2007) Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers. Appl Optics 46(22):5183–5188

    Article  CAS  Google Scholar 

  • Lou S-Q, Wang Z, Ren G-B, Jian S-S (2004) Propagation properties of an index guiding high birefringence fibre. Chin Phys 13:1493–1499

    Article  Google Scholar 

  • Maloshtan AS, Kilin SY (2007) Dynamic control of light localization in photonic crystals. Opt Spectroscopy 103(3):354–359

    Article  CAS  Google Scholar 

  • Mekis A, Joannopoulos JD (2001) Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides. J Lightwave Technol 19(6):861–865

    Article  CAS  Google Scholar 

  • Özbay E, Tuttle G, Sigalas M, Soukoulis CM, Ho KM (1995) Defect structure in layer-by-layer photonic band gap crystal. Phys Lett B 51:13961–13965

    Google Scholar 

  • Painter O, Lee RK, Scherer A, Yariv A, O’Brien JD, Dapkus PD, Kim I (1999) Two-dimensional photonic band-gap defect mode laser. Science 284(5421):1819–1821

    Article  CAS  Google Scholar 

  • Pendry JB (1994) Photonic band structures. J Mod Opt 41(2):202–229

    Article  Google Scholar 

  • Pergande D, Geppert TM, Rhein AV, Schweizer SL, Wehrspohn RB, Moretton S, Lambrecht A (2011) Miniature infrared gas sensors using photonic crystals. J Appl Phys 109(8):083117

    Article  Google Scholar 

  • Pickrell G, Peng W, Wang A (2004) Random-hole optical fiber evanescent-wave gas sensing. Opt Lett 29:1476–1478

    Article  CAS  Google Scholar 

  • Prather DW, Murakowski J, Shi S, Venkataraman S, Sharkawy A, Chen C, Pustai D (2002) High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide. Opt Lett 27(18):1601–1603

    Article  CAS  Google Scholar 

  • Ritari T, Tuominen J, Ludvigsen H, Petersen JC, Sorensen T, Hansen TP, Simonsen HR (2004) Gas sensing using air-guiding photonic bandgap fibers. Opt Express 12:4080–4087

    Article  CAS  Google Scholar 

  • Saitoh K, Koshiba M (2005) Empirical relations for simple design of photonic crystal fibers. Opt Express 13:267–274

    Article  Google Scholar 

  • Sakoda K (2001) Optical properties of photonic crystals. Springer, Berlin

    Book  Google Scholar 

  • Sanchis P, Marti J, Blasco J, Martinez A, Garcia A (2002) Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal circuits. Opt Express 10(24):1391–1397

    Article  Google Scholar 

  • Skorobogatiy M (2009) Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors. J Sensors 2009:524237

    Article  Google Scholar 

  • Srivastava T, Das R, Jha R (2011) Highly accurate and sensitive surface plasmon resonance sensor based on channel photonic crystal waveguides. Sens Actuators B Chem 157:246–252

    Article  CAS  Google Scholar 

  • Sünner T, Stichel T, Kwon SH, Schlereth TW, Höfling S, Kamp M, Forchel A (2008) Photonic crystal cavity based gas sensor. Appl Phys Lett 92(26):261112

    Article  Google Scholar 

  • Takagi K, Seno K, Kawasaki A (2004) Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles. Appl Phys Lett 85(17):3681–3683

    Article  CAS  Google Scholar 

  • Van Eijkelenborg MA, Argyros A, Barton G, Bassett IM, Fellew MG, Henry G, Issa NA, Large MCJ, Manos S, Padden W, Poladian L, Zagari J (2003) Recent progress in microstructured polymer optical fiber fabrication and characterization. Opt Fiber Technol 9:199–209

    Article  Google Scholar 

  • Wang S-W, Chen X, Lu W, Li M, Wang H (2007) Fractal independently tunable multichannel filters. Appl Phys Lett 90:211113

    Google Scholar 

  • Wang XL, Xu ZF, Lu NG, Zhu J, Jin F (2008a) Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Opt Commun 281:1725–1731

    Article  CAS  Google Scholar 

  • Wang ZY, Han K, Shen XP (2008b) Subminiature gas sensor based on the photonic crystals. In: Proceedings of IEEE nanoelectronics conference, INEC 2008, 24–27 March, Pudong, Shanghai, pp. 303–306

    Google Scholar 

  • Wild B, Ferrini R, Houdré R (2004) Temperature tuning of the optical properties of planar photonic crystal microcavities. Appl Phys Lett 84(6):846–848

    Article  CAS  Google Scholar 

  • Xiao SS, Pedersen J, Mortensen NA (2007) Liquid-infiltrated photonic crystals for lab-on-a-chip applications. Proc SPIE 6645:66451L

    Article  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  CAS  Google Scholar 

  • Yuan Y, Li Z, Liu Y, Gao J, Pan Z, Liu Y (2012) Hydrogel photonic sensor for the detection of 3-pyridinecarboxamide. Chem Eur J 18:303–309

    Article  CAS  Google Scholar 

  • Zhang WG, Yan J, Wang G, Li H-X, Zhang G-S (2009) A natural humidity sensitive two dimensional tunable photonic band gap material and its optic properties. J Inorg Mater 24(1):57–60

    Article  Google Scholar 

  • Zhao Y, Zhang Y-N, Wang Q (2011) Research advances of photonic crystal gas and liquid sensors. Sens Actuators B Chem 160:1288–1297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Photonic Crystals. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_6

Download citation

Publish with us

Policies and ethics