Skip to main content

Semiconductor Nanostructures

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4015 Accesses

Abstract

Semiconducting nanocrystals, otherwise known as Quantum Dots (QD’s), form a specific class of gas sensing materials. As a rule, QD’s consist of elements of II-VI groups. Present chapter gives information about QDs and gas sensors, usually optical ones, designed on their base. The using of QDs is a promising approach to gas sensor design, because via coating the QDs’ surfaces with suitable ligands we can strongly effect on luminescent response of QDs to specific chemical species. Semiconductor nanowires are also discussed. These discussions include synthesis of Si nanowires and analysis of their gas sensing properties. Chapter includes 11 figures, 2 Tables and 92 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Aluri GS, Motayed A, Davydov AV, Oleshko VP, Bertness KA, Sanford NA, Rao MV (2011) Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants. Nanotechnology 22:295503

    Article  Google Scholar 

  • Bandaru PR, Pichanusakorn P (2010) An outline of the synthesis and properties of silicon nanowires. Semicond Sci Technol 25:024003

    Article  Google Scholar 

  • Bashouti MY, Stelzner T, Berger A, Christiansen S, Haick H (2008) Chemical passivation of silicon nanowires with C1-C6 alkyl chains through covalent Si-C bonds. J Phys Chem C 112:19168–19172

    Article  CAS  Google Scholar 

  • Bashouti MY, Tung RT, Haick H (2009a) Tuning electrical properties of Si nanowire field effect transistors by molecular engineering. Small 5:2761–2769

    Article  CAS  Google Scholar 

  • Bashouti MY, Stelzner T, Berger A, Christiansen S, Haick H (2009b) Covalent attachment of alkyl functionality to 50 nm silicon nanowires through a chlorination/alkylation process. J Phys Chem C 113:14823–14828

    Article  CAS  Google Scholar 

  • Burda C, Green TC, Link S, El-Sayed MA (1999) Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy. J Phys Chem B 103:1783–1788

    Article  CAS  Google Scholar 

  • Byon K, Tham D, Fischer JE, Johnson AT (2005) Synthesis and postgrowth doping of silicon nanowires. Appl Phys Lett 87:193104

    Article  Google Scholar 

  • Callan JF, De Silva AP, Mulrooney RC, McCaughan B (2007) Luminescent sensing with quantum dots. J Incl Phenom Macrocycl Chem 58:257–262

    Article  CAS  Google Scholar 

  • Chaudhuri RD, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  • Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    Article  CAS  Google Scholar 

  • Chen W, Wang Z, Lin Z, Lin L, Efros AL, Rosen M (1997) Absorption and luminescence of the surface states in ZnS nanoparticles. J Appl Phys 82:3111–3115

    Article  CAS  Google Scholar 

  • Chen Z-G, Zou J, Liu G, Lu HF, Li F, Lu GQ, Cheng HM (2008) Silicon-induced oriented ZnS nanobelts for hydrogen sensitivity. Nanotechnology 19:055710

    Article  Google Scholar 

  • Chen RS, Lu CY, Chen KH, Chen LC (2009) Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires. Appl Phys Lett 95:233119

    Article  Google Scholar 

  • Chung SW, Yu JY, Heath JR (2000) Silicon nanowire devices. Appl Phys Lett 76:2068–2070

    Article  CAS  Google Scholar 

  • Costa-Fernandez JM (2006) Optical sensors based on luminescent quantum dots. Anal Bioanal Chem 384:37–40

    Article  CAS  Google Scholar 

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  CAS  Google Scholar 

  • Cui Y, Duan X, Hu J, Lieber CM (2000) Doping and electrical transport in silicon nanowires. J Phys Chem B 104:5213–5216

    Article  CAS  Google Scholar 

  • Cui Y, Zhong ZH, Wang DL, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–152

    Article  CAS  Google Scholar 

  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  CAS  Google Scholar 

  • De Angelis R, Casalboni M, Hatami F, Ugur A, Masselink WT, Prosposito P (2012) Vapour sensing properties of InP quantum dot luminescence. Sens Actuators B 162:149–152

    Article  Google Scholar 

  • De Smet LCPM, Ullien D, Mescher M, Sudhölter EJR (2011) Organic surface modification of silicon nanowire-based sensor devices. In: Hashim A (ed) Nanowires—implementations and applications. InTech, Manhattan, pp 267–288

    Google Scholar 

  • Dedigama A, Angelo M, Torrione P, Kim T-H, Wolter S, Lampert W, Atewologun A, Edirisoorya M, Collins L, Kuech TF, Losurdo M, Bruno G, Brown A (2012) Hemin-functionalized InAs-based high sensitivity room temperature NO gas sensors. J Phys Chem C 116:826–833

    Article  CAS  Google Scholar 

  • Demami F, Ni L, Rogel R, Salaun AC, Pichon L (2010) Silicon nanowires synthesis for chemical sensor applications. Procedia Eng 5:351–354

    Article  CAS  Google Scholar 

  • Demami F, Ni L, Rogel R, Salaun AC, Pichon L (2012) Silicon nanowires based resistors as gas sensors. Sens. Actuators B Chem 170:158–162

    Google Scholar 

  • Dobrokhotov V, McIlroy DN, Norton MG, Abuzir A, Yeh WJ, Stevenson I, Pouy R, Bochenek J, Cartwright M, Wang L, Dawson J, Beaux M, Berven C (2006) Principles and mechanisms of gas sensing by GaN-nanowires functionalized with gold nanoparticles. J Appl Phys 99:104302

    Article  Google Scholar 

  • Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921–924

    Article  CAS  Google Scholar 

  • Field CR, In HJ, Begue NJ, Pehrsson PE (2011) Vapor detection performance of vertically aligned, ordered arrays of silicon nanowires with a porous electrode. Anal Chem 83:4724–4728

    Article  CAS  Google Scholar 

  • Gao C, Deng S-R, Wana J, Lu B-R, Liu R, Huq E, Qu X-P, Chen Y (2010) 22 nm silicon nanowire gas sensor fabricated by trilayer nanoimprint and wet etching. Microelectron Eng 87:927–930

    Article  CAS  Google Scholar 

  • Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  • Green M (2002) Solution routes to III–V semiconductor quantum dots. Curr Opin Solid State Mater Sci 6:355–363

    Article  CAS  Google Scholar 

  • Guo S, Wang E (2011) Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Acc Chem Res 44(7):491–500

    Article  CAS  Google Scholar 

  • Haick H, Hurley PT, Hochbaum AI, Yang P, Lewis NS (2006) Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J Am Chem Soc 128:8990–8991

    Article  CAS  Google Scholar 

  • Haight R, Sekaric L, Afzali A, Newns D (2009) Controlling the electronic properties of silicon nanowires with functional molecular groups. Nano Lett 9:3165–3170

    Article  CAS  Google Scholar 

  • Hasani M, Coto Garcia AM, Costa-Fernandez JM, Sanz-Medel A (2010) Sol–gels doped with polymer-coated ZnS/CdSe quantum dots for the detection of organic vapors. Sens Actuators B 144:198–202

    Article  CAS  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  CAS  Google Scholar 

  • Hochbaum AI, Chen R, Delgado D, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  CAS  Google Scholar 

  • Hsu C-M, Connor ST, Tang MX, Cui Y (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109

    Article  Google Scholar 

  • Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748

    Article  CAS  Google Scholar 

  • Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504

    Article  CAS  Google Scholar 

  • Jorge P, Martins MA, Trindade T, Santos JL, Farahi F (2007) Optical fiber sensing using quantum dots. Sensors 7:3489–3534

    Article  CAS  Google Scholar 

  • Korsunska NE, Dybiec M, Zhukov L, Ostapenko S, Zhukov T (2005) Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots. Semicond Sci Technol 20(8):876–881

    Article  CAS  Google Scholar 

  • Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122

    Article  CAS  Google Scholar 

  • Liu HI, Biegelsen DK, Johnson NM, Ponce FA, Peace RFW (1993) Self-limiting oxidation of Si nanowires. J Vac Sci Technol B 11(6):2532–2537

    Article  CAS  Google Scholar 

  • Liu HI, Biegelsen DK, Ponce FA, Johnson NM, Pease RFW (1994) Self‐limiting oxidation for fabricating sub‐5 nm silicon nanowires. Appl Phys Lett 64:1383–1385

    Article  CAS  Google Scholar 

  • Ma DDD, Lee CS, Lee ST (2001) Scanning tunneling microscopic study of boron-doped silicon nanowires. Appl Phys Lett 79:2468–2470

    Article  CAS  Google Scholar 

  • Ma Q, Cui H, Su X (2009) Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Biosens Bioelectron 25:839–844

    Article  CAS  Google Scholar 

  • McAlpine MC, Friedman RS, Lieber CM (2005) High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc IEEE 93(7):1357–1363

    Article  CAS  Google Scholar 

  • McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire array on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384

    Article  CAS  Google Scholar 

  • Mohanta D, Nath SS, Mishara NC, Choudhury A (2003) Irradiation induced gain growth and surface emission enhancement of ZnS:Mn/PVOH semiconductor nano particles by Cl+9 ion impact. Bull Mater Sci 26:289–294

    Article  CAS  Google Scholar 

  • Morton KJ, Nieberg G, Bai S, Chou SY (2008) Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology 19:345301

    Article  Google Scholar 

  • Nazzal AY, Qu L, Peng X, Min XM (2003) Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett 3(6):819–822

    Article  CAS  Google Scholar 

  • Nolan M, O’Callaghan S, Fagas G, Greer JC, Frauenheim T (2007) Silicon nanowire band gap modification. Nano Lett 34:34–38

    Article  Google Scholar 

  • Norhayati AB, Aidhia R, Akrajas AU, Muhamad MS, Yahaya M (2010) Fluorescence gas sensor using CdTe quantum dots film to detect volatile organic compounds. Mater Sci Forum 663–665:276–279

    Google Scholar 

  • Offermans P, Crego-Calama M, Brongersma SH (2010) Gas detection with vertical InAs nanowire arrays. Nano Lett 10:2412–2415

    Article  CAS  Google Scholar 

  • Paska Y, Stelzner T, Christiansen S, Haick H (2011) Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano 5(7):5620–5626

    Article  CAS  Google Scholar 

  • Peng K-Q, Yan Y-J, Gao S-P, Zhu J (2002) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167

    Article  CAS  Google Scholar 

  • Potyrailo RA, Leach AM (2006) Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl Phys Lett 88(13):134110

    Article  Google Scholar 

  • Pugh-Thomas D, Walsh BM, Gupta MC (2011) CdSe(ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology 22:185503

    Article  Google Scholar 

  • Rogash AL, Kornowski A, Gao M, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069

    Article  Google Scholar 

  • Sadeghian RB, Islam MS (2011) Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nat Mater 10:135–140

    Article  CAS  Google Scholar 

  • Saren AA, Kuznetsov SN, Kuznetsov AS, Gurtov VA (2011) Excitonic chemiluminescence in Si and CdSe nanocrystals induced by their interaction with ozone. Chemphyschem 12(4):846–853

    Article  CAS  Google Scholar 

  • Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21:2681–2702

    Article  CAS  Google Scholar 

  • Schmidt V, Wittemann JV, Gosele U (2010) Growth, thermodynamics, and electrical properties of silicon nanowires. Chem Rev 110:361–388

    Article  CAS  Google Scholar 

  • Selvan ST, Tan TTY, Dong Kee Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26(14):11631–11641

    Article  CAS  Google Scholar 

  • Singh N, Buddharaju KD, Manhas SK, Agarwal A, Rustagi SC, Lo GC, Balasubramanian N, Kwong D-L (2008) Si, SiGe nanowire devices by top–down technology and their applications. IEEE Trans Electron Devices 55:3107–3118

    Article  CAS  Google Scholar 

  • Skucha K, Fan Z, Jeon K, Javey A, Boser B (2010) Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sens Actuators B 145:232–238

    Article  CAS  Google Scholar 

  • Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190–200

    Article  CAS  Google Scholar 

  • Suk SD, Lee S-Y, Kim S-M, Yoon E-J, Kim M-S, Li M, Oh CW, Yeo KH, Kim SH, Shin D-S, Lee K-H, Park HS, Han JN, Park CJ, Park J-B, Kim D-W, Park D, Ryu B-I (2005) High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: Proceedings of IEEE international electron devices meeting, 5–7 Dec 2005. IEDM Technology Digest, IEEE, Washington, DC, pp. 717–720.

    Google Scholar 

  • Suk SD, Yeo KH, Cho KH, Li M, Yeoh YY, Lee S-Y, Kim SM, Yoon EJ, Kim MS, Oh CW, Kim SH, Kim D-W, Park D (2008) High-performance twin silicon nanowire MOSFET (TSNWFET) on bulk Si wafer. IEEE Trans Nanotechnol 7:181–184

    Article  Google Scholar 

  • Tang YH, Sun XH, Au FCK, Liao LS, Peng HY, Lee CS, Lee ST, Sham TK (2001) Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains. Appl Phys Lett 79:1673–1675

    Article  CAS  Google Scholar 

  • Tang YH, Sham TK, Jurgensen A, Hu YF, Lee CS, Lee ST (2002) Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy. Appl Phys Lett 80:3709–3711

    Article  CAS  Google Scholar 

  • Teo BK, Sun XH (2007) Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 107:1454–1532

    Article  CAS  Google Scholar 

  • Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  • Tisch U, Haick H (2010) Nanomaterials for cross-reactive sensor arrays. MRS Bull 35:797–803

    Article  CAS  Google Scholar 

  • Van Sark WGJHM, Frederix PLTM, Van den Heuvel DJ, Gerritsen HC, Bol AA, van Lingen JNJ, de Donega C, Meijerink A (2001) Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J Phys Chem B 105:8281–8284

    Article  Google Scholar 

  • Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA (2007) Surface-functionalized CdSe quantum dots for the detection of hydrocarbons. Sens Actuators B 123:522–529

    Article  CAS  Google Scholar 

  • Wan J, Deng SR, Yang R, Shu Z, Lu BR, Xie SQ, Chen Y, Huq E, Liu R, Qu XP (2009) Silicon nanowire sensor for gas detection fabricated by nanoimprint on SU8/SiO2/PMMA trilayer. Microelectron Eng 86:1238–1242

    Article  CAS  Google Scholar 

  • Wang XU, Chen X, Xie Z-X, Wang X-R (2008) Reversible optical sensor strip for oxygen. Angew Chem Int Ed 47:7450–7453

    Article  CAS  Google Scholar 

  • Wang X, Xie Z, Huang H, Liu Z, Chen D, Shen G (2012) Gas sensors, thermistor and photodetector based on ZnS nanowires. J Mater Chem 22:6845–6850

    Article  CAS  Google Scholar 

  • Weidemann O, Kandaswamy PK, Monroy E, Jegert G, Stutzmann M, Eickhoff M (2009) GaN quantum dots as optical transducers for chemical sensors. Appl Phys Lett 94:113108

    Article  Google Scholar 

  • Wright JS, Lim W, Norton DP, Pearton SJ, Ren F, Johnson JL, Ural A (2010) Nitride and oxide semiconductor nanostructured hydrogen gas sensors. Semicond Sci Technol 25:024002

    Article  Google Scholar 

  • Xie R, Kolb U, Li J, Basché T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488

    Article  CAS  Google Scholar 

  • Xu J, Zhang W, Yang Z, Ding S, Zeng C, Chen L, Wang Q, Yang S (2009) Large-scale synthesis of long crystalline Cu2-xSe nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing. Adv Funct Mater 19:1759–1766

    Article  CAS  Google Scholar 

  • Xu H, Wu J, Chen C-H, Zhang L, Yang K-L (2010) Detecting hydrogen sulfide by using transparent polymer with embedded CdSe/CdS quantum dots. Sens Actuators B 143:535–538

    Article  CAS  Google Scholar 

  • Yu JY, Chung SW, Heath JR (2000) Silicon nanowires: preparation, device fabrication, and transport properties. J Phys Chem B 104:11864–11870

    Article  CAS  Google Scholar 

  • Zakharov ND, Werner P, Gerth G, Schubert L, Sokolov L, Gosele U (2006) Growth phenomena of Si and Si/Ge nanowires on Si (1 1 1) by molecular beam epitaxy. J Cryst Growth 290:6–10

    Article  CAS  Google Scholar 

  • Zhang YF, Tang YH, Peng HY, Wang N, Lee CS, Bello I, Lee ST (1999) Diameter modification of silicon nanowires by ambient gas. Appl Phys Lett 75:1842–1844

    Article  CAS  Google Scholar 

  • Zhelev Z, Jose R, Nagase T, Ohba H, Bakalova R, Ishikawa M, Baba Y (2004) Enhancement of the photoluminescence of CdSe quantum dots during long-term UV-irradiation: privilege or fault in life science research? J Photochem Photobiol B 75(1–2):99–105

    Article  CAS  Google Scholar 

  • Zheng GF, Lu W, Jin S, Lieber CM (2004) Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv Mater 16:1890–1893

    Article  CAS  Google Scholar 

  • Zhou GW, Li H, Sun HP, Yu DP, Wang YQ, Huang XJ, Chen LQ, Zhang Z (1999) Controlled Li doping of Si nanowires by electrochemical insertion method. Appl Phys Lett 75:2447–2449

    Article  CAS  Google Scholar 

  • Zhou XT, Hu JQ, Li CP, Ma DDD, Lee CS, Lee ST (2003) Silicon nanowires as chemical sensors. Chem Phys Lett 369:220–224

    Article  CAS  Google Scholar 

  • Zschech D, Kim DH, Milenin AP, Scholz R, Hillebrand R, Hawker CJ, Russell TP, Steinhart M, Gosele U (2007) Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. Nano Lett 7:1516–1520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Semiconductor Nanostructures. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_5

Download citation

Publish with us

Policies and ethics