Skip to main content

Outlook: Sensing Material Selection Guide

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4011 Accesses

Abstract

This short chapter gives general view on the selection of sensing materials acceptable for application in gas sensors. It is shown that there is no ideal sensing material. Therefore, in choosing a sensing material for a particular application, the selected material should capitalize on its advantages, while its shortcomings should minimally influence the characteristics of the final device. At that it is necessary to take into account that sensing materials for different applications require different properties, which may be important only for a specific type of sensor. Chapter includes 4 Tables and 31 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baena JR, Gallego M, Valcarcel M (2002) Fullerenes in the analytical sciences. Trends Anal Chem 21(3):187–198

    Article  CAS  Google Scholar 

  • Baratto C, Comini E, Faglia G, Sberveglieri G, Zha M, Zappettini A (2005) Metal oxide nanocrystals for gas sensing. Sens Actuators B 109:2–6

    Article  CAS  Google Scholar 

  • Cantalini C, Valentini L, Lozzi L, Armentano I, Kenny JM, Santucci S (2003) NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sens Actuators B 93:333–337

    Article  CAS  Google Scholar 

  • Chao YC, Shih JS (1998) Adsorption study of organic molecules on fullerene with piezoelectric crystal detection system. Anal Chim Acta 374:39–46

    Article  CAS  Google Scholar 

  • Clements J, Boden N, Gibson TD, Chandler RC, Hulbert JN, Ruck-Keene EA (1998) Novel, self-organizing materials for use in gas sensor arrays: beating the humidity problem. Sens Actuators B 47:37–42

    Article  CAS  Google Scholar 

  • Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40

    Article  CAS  Google Scholar 

  • Gao PX, Wang ZL (2005) Nanoarchitectures of semiconducting and piezoelectric zinc oxide. J Appl Phys 97:044304

    Article  Google Scholar 

  • Harsanyi G (1994) Polymer films in sensor applications. Technomic, Lancaster, PA

    Google Scholar 

  • Harsanyi G (2000) Polymer films in sensor applications: a review of present uses and future possibilities. Sens Rev 20(2):98–105

    Article  Google Scholar 

  • Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  • Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxides: state of the art and approaches. Sens Actuators B 107:209–232

    Article  CAS  Google Scholar 

  • Kreuer KD (1997) On the development of proton conducting materials for technological applications. Solid State Ionics 97:1–15

    Article  CAS  Google Scholar 

  • Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  • Kulwicki BM (1991) Humidity sensors. J Am Ceram Soc 74:697–708

    Article  CAS  Google Scholar 

  • Penza M, Antolini F, Vittori-Antisari M (2004) Carbon nanotubes as SAW chemical sensors materials. Sens Actuators B 100:47–59

    Article  CAS  Google Scholar 

  • Potyrailo RA, Mirsky VM (2009) Introduction to combinatorial methods for chemical and biological sensors. In: Potyrailo RA, Mirsky VM (eds) Combinatorial methods for chemical and biological sensors. Springer, New York, pp 3–24

    Chapter  Google Scholar 

  • Ramgir NS, Mulla IS, Vijayamohanan KP (2005) A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens Actuators B 107:708–715

    Article  CAS  Google Scholar 

  • Sadaoka Y (1992) Organic semiconductor gas sensors. In: Sberveglieri G (ed) Gas sensors. Kluwer Academic, Dordrecht, pp 187–218

    Chapter  Google Scholar 

  • Sberveglieri G, Baratto C, Comini E, Faglia G, Ferroni M, Ponzoni A, Vomiero A (2007) Synthesis and characterization of semiconducting nanowires for gas sensing. Sens Actuators B 121:208–213

    Article  CAS  Google Scholar 

  • Sysoev VV, Strelcov E, Sommer M, Bruns M, Kiselev I, Habicht W, Kar S, Gregoratti L, Kiskinova M, Kolmakov A (2010) Single-nanobelt electronic nose: engineering and tests of the simplest analytical element. ACS Nano 4(8):4487–4494

    Article  CAS  Google Scholar 

  • Valentini L, Cantalini C, Lozzi L, Armentano I, Kenny JM, Santucci S (2003) Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Mater Sci Eng C 23:523–529

    Article  Google Scholar 

  • Valentini L, Cantalini C, Armentano I, Kenny JM, Lozzi L, Santucci S (2004) Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond Relat Mater 13:1301–1305

    Article  CAS  Google Scholar 

  • Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA (2001) Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B 81:32–41

    Article  CAS  Google Scholar 

  • Walton DJ (1990) Electrically conducting polymers. Mater Design 11:142–152

    Article  CAS  Google Scholar 

  • Wang ZL (2003) Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv Mater 15:432–436

    Article  Google Scholar 

  • Wang ZL (2004) Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu Rev Phys Chem 55:159–196

    Article  CAS  Google Scholar 

  • Wilson DM, Hoyt S, Janata J, Booksh K, Obando L (2001) Chemical sensors for portable, handheld field instruments. IEEE Sensors J 1:256–274

    Article  CAS  Google Scholar 

  • Yu C, Hao Q, Saha S, Shi L, Kong X, Wang ZL (2005) Integration of metal oxide nanobelts with microsystems for nerve agent detection. Appl Phys Lett 86:063101

    Article  Google Scholar 

  • Zhang Y, Ago H, Liu J, Yumura M, Uchida K, Ohshima S, Iijima S, Zhu J, Zhang X (2004) The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled. J Cryst Growth 264:363–368

    Article  CAS  Google Scholar 

  • Zhang Y, Kolmakov A, Libach Y, Moskovits M (2005) Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem B 109:1923–1929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Outlook: Sensing Material Selection Guide. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_29

Download citation

Publish with us

Policies and ethics