Skip to main content

Technologies Suitable for Gas Sensor Fabrication

  • Chapter
  • First Online:

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Production of high-quality materials suitable for gas sensors is one of the most important tasks of modern materials science. However, there are many various materials which can be used in gas sensor design. The possible differences in the physical-chemical properties of the materials are also great. This vast amount of variation indicates that it is impossible to produce such a wide range of materials using just one method. Therefore, for preparing gas sensor materials with required properties one should use various technologies such as ceramic, thick film, planar and thin film technologies. Present chapter describes these technologies as well as methods used in these technologies, and analyzes their advantages and disadvantages. Methods of polymer synthesis, polymer film fabrication and methods of film deposition on fibers are also discussed. Chapter includes 18 figures, 11 Tables and 183 references.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Althainz P, Goschnick J, Ehrmann S, Ache HJ (1996) Multisensor microsystem for contaminants in air. Sens Actuators B Chem 33:72–76

    CAS  Google Scholar 

  • Amjoud M, Rhouta B, Alimoussa A, Hajji L, Mezzane D, Ahamdane H (2005) Effect of pH adjustment in sol-gel synthesis route on grain size of tin dioxide intended for gas sensors application. Phys Chem News 22:120–124

    CAS  Google Scholar 

  • Arthur JA (2002) Molecular beam epitaxy. Surf Sci 500:189–217

    CAS  Google Scholar 

  • Bagwell RB, Messing GL (1996) Critical factors in the production of sol–gel derived porous alumina. Key Eng Mater 115:45–64

    CAS  Google Scholar 

  • Barbi GB, Santos JP, Serrini P, Gibson PN, Horrillo MC, Manes L (1995) Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments. Sens Actuators B Chem 25:559–563

    CAS  Google Scholar 

  • Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors. A status report. Fresenius J Anal Chem 365:287–304

    CAS  Google Scholar 

  • Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    CAS  Google Scholar 

  • Bender M, Gagaoudakis E, Douloufakis E, Natsakou E, Katsarakis N, Cimalla V, Kiriakidis G, Fortunato E, Nunes P, Marques A, Martins R (2002) Production and characterization of zinc oxide thin films for room temperature ozone sensing. Thin Solid Films 418:45–50

    CAS  Google Scholar 

  • Bietsch A, Zhang J, Hegner M, Lang HP, Gerber C (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880

    CAS  Google Scholar 

  • Bradley DC, Mehrotra RC, Gaur DP (1978) Metal alkoxides. Academic, London

    Google Scholar 

  • Brinker CJ, Clark DE, Ullrich DR (eds) (1984) Better ceramics through chemistry. Elsevier, New York, NY

    Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, San Diego, CA

    Google Scholar 

  • Brinker CJ, Hurd AJ, Schunk PR, Ashely CS, Cairncross RA, Samuel J, Chen KS, Scotto C, Schwartz RA (1996) Sol-gel derived ceramic films—fundamentals and applications. In: Stern K (ed) Metallurgical and ceramic protective coatings. Chapman & Hall, London, pp 112–151

    Google Scholar 

  • Brinzari V, Korotcenkov G, Schwank J, Lantto V, Saukko S, Golovanov V (2002) Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films 408:51–58

    CAS  Google Scholar 

  • Brousse T, Schleich DM (1996) Sprayed and thermally evaporated SnO2 thin films for ethanol sensors. Sens Actuators B Chem 31:77–79

    CAS  Google Scholar 

  • Bunshah RF (ed) (1994) Handbook of deposition technologies for film and coatings: science, technology and applications. Noyes, Park Ridge, NJ

    Google Scholar 

  • Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305

    CAS  Google Scholar 

  • Cho N, Lim T, Jeon Y, Gong M (2008) Inkjet printing of polymeric resistance humidity sensor using UV-curable electrolyte inks. Macromol Res 16:149–154

    CAS  Google Scholar 

  • Choi U-S, Shimanoe K, Yamazoe N (2005) Influences of ball-milling time on gas-sensing properties of Co3O4–SnO2 composites. Sens Actuators B Chem 107:516–522

    Google Scholar 

  • Choy KL (2000) Vapour processing of nanostructured materials. In: Nelwa HS (ed) Handbook of nanostructured materials and nanotechnology, vol 1. Academic, San Diego, CA, pp 533–577

    Google Scholar 

  • Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170

    CAS  Google Scholar 

  • Chrisey D, Hubler G (eds) (1994) Pulsed laser deposition of thin films. Wiley, New York, NY

    Google Scholar 

  • Christen HM, Eres G (2008) Recent advances in pulsed-laser deposition of complex oxides. J Phys Condens Matter 20:264005

    CAS  Google Scholar 

  • Chung WK, Sakai G, Shimanoe K, Miura N, Lee DD, Yamazoe N (1998) Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens Actuators B Chem 46:139–145

    CAS  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G (2009) Electrical-based gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York, NY, pp 47–107

    Google Scholar 

  • Crowley K, Morrin A, Hernandez A, O’Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77:710–717

    CAS  Google Scholar 

  • Crowley K, Morrin A, Shepherd RL, in het Panhuis M, Wallace GG, Smyth MR, Killard AJ (2010) Fabrication of polyaniline-based gas sensors using piezoelectric inkjet and screen printing for the detection of hydrogen sulfide. IEEE Sens J 10:1419–1426

    CAS  Google Scholar 

  • De Girolamo Del Mauro A, Grimaldi IA, Loffredo F, Massera E, Polichetti T, Villani F, Di Francia G (2011) Geometry of the inkjet-printed sensing layer for a better volatile organic compound sensor response. J Appl Polym Sci 122:3644–3650

    Google Scholar 

  • Demarne V, Grisel A (1993) A new SnO2 low temperature deposition technique for integrated gas sensors. Sens Actuators B Chem 15–16:63–67

    Google Scholar 

  • Dietzel Y, Przyborowski W, Nocke G, Offermann P, Hollstein F, Meinhardt J (2000) Investigation of PVD arc coatings on polyamide fabrics. Surf Coat Technol 135:75–81

    CAS  Google Scholar 

  • DiGiulio M, Serra A, Tepore A, Rella R, Siciliano P, Mirenghi L (1996) Influence of the deposition parameters on the physical properties of tin oxide thin films. Mater Sci Forum 203:143–148

    CAS  Google Scholar 

  • Dolbec R, El Khakani MA, Serventi AM, Saint-Jacques RG (2003) Influence of the nanostructural characteristics on the gas sensing properties of pulsed laser deposited tin oxide thin films. Sens Actuators B Chem 93:566–571

    CAS  Google Scholar 

  • Dua V, Surwade S, Ammu S, Agnihotra S, Jain S, Roberts K, Park S, Ruoff R, Manohar S (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed Engl 49:2154–2157

    CAS  Google Scholar 

  • Epifani M, Francioso L, Siciliano P, Helwig A, Mueller G, Dıґaz R, Arbiol J, Morante JR (2007) SnO2 thin films from metalorganic precursors: synthesis, characterization, microelectronic processing and gas-sensing properties. Sens Actuators B Chem 124:217–226

    CAS  Google Scholar 

  • Favia P, De Agostino R (1998) Plasma treatments and plasma deposition of polymers for biomedical applications. Surf Coat Technol 98:1102–1106

    CAS  Google Scholar 

  • Francioso L, Russo M, Taurino AM, Siciliano P (2006) Micrometric patterning process of sol–gel SnO2, In2O3 and WO3 thin film for gas sensing applications: towards silicon technology integration. Sens Actuators B Chem 119:159–166

    CAS  Google Scholar 

  • Gaines GL Jr (1966) Insoluble monolayers at liquid-gas interfaces. Wiley-Interscience, New York, NY

    Google Scholar 

  • Gardner JW, Bartlett PN (1995) Application of conducting polymer technology in microsystems. Sens Actuators A Phys 51:57–66

    CAS  Google Scholar 

  • Gardner JW, Pike A, de Rooij NF, Koudelka-Hep M, Clerc PA, Hierlemann A, Gopel W (1995) Integrated array sensor for detecting organic solvents. Sens Actuators B Chem 26–27:135–139

    Google Scholar 

  • Glocker DA, Shah I (eds) (1995) Handbook of thin film process technology. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Göpel W, Reinhardt G (1996) Metal oxide sensors: new devices through tailoring interfaces on the atomic scale. In: Baltes H, Göpel W, Hesse J (eds) Sensors update, Sensor technology—applications markets, vol 1. VCH, Weinheim, pp 49–120

    Google Scholar 

  • Graf M, Barrettino D, Zimmermann M, Hierlemann A, Baltes H, Hahn S, Barsan N, Weimar U (2004) CMOS monolithic metal-oxide sensor system comprising a micro hotplate and associated circuitry. IEEE Sens J 4(1):9–16

    CAS  Google Scholar 

  • Guidi V, Butturi MA, Carotta MC, Cavicchi B, Ferroni M, Malagu C, Martinelli G, Vincenzi D, Sacerdoti M, Zen M (2002) Gas sensing through thick film technology. Sens Actuators B Chem 84:72–77

    CAS  Google Scholar 

  • Gurunathan K, Murugan AV, Marimuthu R, Mulik UP, Amalnerkar DP (1999) Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61:173–191

    CAS  Google Scholar 

  • Hadjipanayis GC, Siegel RW (eds) (1994) Nanophase materials. Kluwer, Dordrecht

    Google Scholar 

  • Hahn H (1997) Gas phase synthesis of nanocrystalline materials. NanoStruct Mater 9:3–12

    CAS  Google Scholar 

  • Harsanyi G (1995) Polymeric sensing films: new horizons in sensorics? Sens Actuators A Phys 46–47:85–88

    Google Scholar 

  • Harsanyi G (2000) Sensors in biomedical applications: fundamentals, technology and applications. Technomic, Basel

    Google Scholar 

  • Hecht G, Richter F, Hahn J (eds) (1994) Thin films. DGM Informationgessellschaft, Oberursel

    Google Scholar 

  • Heilig A, Bârsan N, Weimar U, Gopel W (1999) Selectivity enhancement of SnO2 gas sensors: simultaneous monitoring of resistances and temperatures. Sens Actuators B Chem 58:302–309

    CAS  Google Scholar 

  • Hench LL, Ulrich DR (eds) (1984) Ultrastructure processing of ceramics, glasses, and composites. Wiley, New York, NY

    Google Scholar 

  • Herbig B, Loebmann P (2004) TiO2 photocatalysts deposited on fiber substrates by liquid phase deposition. J Photochem Photobiol A Chem 163:359–365

    CAS  Google Scholar 

  • Heule M, Gauckler LJ (2001) Gas sensors fabricated from ceramic suspensions by micromolding in capillaries. Adv Mater 13:1790–1793

    CAS  Google Scholar 

  • Heule M, Meier L, Gauckler LJ (2001) Micropatterning of ceramics on substrates towards gas sensing applications. Mater Res Soc Symp Proc 657:EE9.4

    Google Scholar 

  • Hitchman ML, Jensen KF (1993) CVD: principles and applications. Academic, San Diego, CA

    Google Scholar 

  • Huang H, Tan OK, Lee YC, Tse MS (2006) Preparation and characterization of nanocrystalline SnO2 thin films by PECVD. J Cryst Growth 288:70–74

    CAS  Google Scholar 

  • Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A 70:365–376

    CAS  Google Scholar 

  • Ihokura K, Watson J (1994) The stannic oxide Gas sensor: principle and application. CRC, Boca Raton, FL

    Google Scholar 

  • Ivanovskaya M (2000) Ceramic and film metal oxide sensors obtained by sol-gel method: structural features and gas-sensitive properties. Electron Technol 33(1/2):108–112

    CAS  Google Scholar 

  • Janata J (1989) Principle of chemical sensors. Plenum, New York, NY

    Google Scholar 

  • Jaworek A, Sobczyk AT (2008a) Electrospraying route to nanotechnology: an overview. J Electrostatics 66:197–219

    CAS  Google Scholar 

  • Jaworek A, Sobczyk AT (2008b) Electrospraying route to nanotechnology: an overview. J Electrostatics 66:197–219

    CAS  Google Scholar 

  • Kaneko T, Nittono O (1997) Improved design of inverted magnetrons used for deposition of thin films on wires. Surf Coat Technol 90:268–274

    CAS  Google Scholar 

  • Kashima T, Matsuda Y, Fujiyama H (1991) Development of the quadrupole plasma chemical vapour deposition method for low temperature, high speed coating on an optical fibre. Mater Sci Eng A 139:79–84

    Google Scholar 

  • Kaya C, He JY, Gu X, Butler EG (2002) Nanostructured ceramic powders by hydrothermal synthesis and their applications. Microporous Mesoporous Mater 54:37–49

    CAS  Google Scholar 

  • Kern F, Gadow R (2002) Liquid phase coating process for protective ceramic layers on carbon fibers. Surf Coat Technol 151–152:418–423

    Google Scholar 

  • Kern F, Gadow R (2004) Deposition of ceramic layers on carbon fibers by continuous liquid phase coating. Surf Coat Technol 180–181:533–537

    Google Scholar 

  • Kim J, Yun J, Song J, Han C (2009) The spontaneous metal-sitting structure on carbon nanotube arrays positioned by inkjet printing for wafer-scale production of high sensitive gas sensor units. Sens Actuators B Chem 135:587–591

    CAS  Google Scholar 

  • Kiriakidis G, Suchea M, Christoulakis S, Horvath P, Kitsopoulos T, Stoemenos J (2007) Structural characterization of ZnO thin films deposited by dc magnetron sputtering. Thin Solid Films 515:8577–8581

    CAS  Google Scholar 

  • Kissin VV, Voroshilov SA, Sysoev VV (1999a) Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by r.f. sputtering. Sens Actuators B Chem 55:55–59

    Google Scholar 

  • Kissin VV, Voroshilov SA, Sysoev VV (1999b) A comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications. Thin Solid Films 348:307–314

    Google Scholar 

  • Koch CC (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater 9:13–22

    CAS  Google Scholar 

  • Kordas K, Mustonen T, Toth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2:1021–1025

    CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, DiBattista M, Schwank J, Vasiliev A (2001a) Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens Actuators B Chem 77:244–252

    CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Schwank J, Cerneavschi A (2001b) Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics. J Mater Sci Eng C 19:73–77

    Google Scholar 

  • Korotcenkov G, Cerneavschi A, Brinzari V, Vasiliev A, Cornet A, Morante JR, Cabot A, Arbiol J (2004) In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sens Actuators B Chem 99:304–310

    Google Scholar 

  • Korotcenkov G (2005) Gas response control through structural and chemical modifications of metal oxide films: state of the art and approaches. Sens Actuators B Chem 107:209–232

    CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Cornet A, Morante JR (2005a) Structural stability of In2O3 films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479:38–51

    CAS  Google Scholar 

  • Korotcenkov G, Cornet A, Rossinyol E, Arbiol J, Brinzari V, Blinov Y (2005b) Faceting characterization of SnO2 nanocrystals deposited by spray pyrolysis from SnCl4-5H2O water solution. Thin Solid Films 471:310–319

    CAS  Google Scholar 

  • Korotcenkov G, Ivanov M, Blinov I, Stetter JR (2007a) Kinetics of In2O3-based thin film gas sensor response: the role of “redox” and adsorption/desorption processes in gas sensing effects. Thin Solid Films 515(7–8):3987–3996

    CAS  Google Scholar 

  • Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V (2007b) The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem 128:51–63

    CAS  Google Scholar 

  • Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39

    Google Scholar 

  • Korotcenkov G, Cho BK (2009) Thin film SnO2-based gas sensors: film thickness influence. Sens Actuators B Chem 142:321–330

    CAS  Google Scholar 

  • Korotcenkov G, Cho BK (2010) Methods of sensing materials synthesis and deposition. In: Korotcenkov G (ed) Chemical sensors: fundamentals of sensing materials, vol 1, General approaches. Momentum, New York, NY, pp 214–303

    Google Scholar 

  • Kraus T, Malaquin L, Schmid H, Riess W, Spencer ND, Wolf H (2007) Nanoparticle printing with single-particle resolution. Nature Nanotechnol 2:570–576

    CAS  Google Scholar 

  • Kukkola J, Mohl M, Leino A-R, Toth G, Wu M-C, Shchukarev A, Popov A, Mikkola J-P, Lauri J, Riihimaki M, Lappalainen J, Jantunena H, Kordas K (2012) Inkjet-printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. J Mater Chem 22:17878–17886

    CAS  Google Scholar 

  • Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34(8):1053–1060

    CAS  Google Scholar 

  • Labeau M, Gautheron B, Delabouglise G, Pena J, Ragel V, Varela A, Roman J, Martinez J, Gonzalez-Calbet JM, Regi-Vallet M (1993) Synthesis, structure and gas sensitivity properties of pure and doped SnO2. Sens Actuators B Chem 15–16:379–389

    Google Scholar 

  • Lalauze R, Breuli P, Pijolat C (1991) Thin films for gas sensors. Sens Actuators B Chem 3:175–182

    Google Scholar 

  • Lavernia E, Wu Y (1996) Spray atomization and deposition. Wiley, Chichester

    Google Scholar 

  • Lee D-H, Chang Y-J, Stickle W, Chang C-H (2007a) Functional porous tin oxide thin films fabricated by inkjet printing process. Electrochem Solid State Lett 10(11):K51–K54

    CAS  Google Scholar 

  • Lee S, Lee G-G, Kim J, Kang S-JL (2007b) A novel process for fabrication of SnO2-based thick film gas sensors. Sens Actuators B Chem 123:331–335

    CAS  Google Scholar 

  • LeGore LJ, Greenwood OD, Paulus JW, Frankel DJ, Lad RJ (1997) Controlled growth of WO3 films. J Vac Sci Technol A 15:1223–1227

    CAS  Google Scholar 

  • Leite ER, Cerri JA, Longo E, Valera JA, Paskocima CA (2001) Sintering of ultrafine undoped SnO2 powders. J Eur Ceram Soc 21:669–675

    CAS  Google Scholar 

  • Li GL, Wang GH, Hong JM (1999) Morphologies of rutile form TiO2 twins crystals. J Mater Sci Lett 18:1243–1246

    CAS  Google Scholar 

  • Li B, Santhanam S, Schultz L, Jeffries-EL M, Iovu MC, Sauve G, Cooper J, Zhang R, Revelli JC, Kusne AG, Snyder JL, Kowalewski T, Weiss LE, McCullough RD, Fedder GK, Lambeth DN (2007) Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sens Actuators B Chem 123:651–660

    CAS  Google Scholar 

  • Liu C (1995) Development of chemical sensors using microfabrication and micromachining techniques. Mater Chem Phys 42:87–90

    CAS  Google Scholar 

  • Livage J (1997) Sol-gel processes. Solid State Mater Sci 2:132–136

    CAS  Google Scholar 

  • Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–342

    CAS  Google Scholar 

  • Llobet E, Molas G, Molinas P, Calderer J, Vilanova X, Brezmes J, Sueiras JE, Correig X (2000) Fabrication of highly selective tungsten oxide ammonia sensors. J Electrochem Soc 147(3):776–779

    CAS  Google Scholar 

  • Lu K (2008) Sintering of nanoceramics. Int Mater Rev 53:21–38

    CAS  Google Scholar 

  • Mabrook MF, Pearson C, Petty MC (2006a) Inkjet-printed polymer films for the detection of organic vapors. IEEE Sens J 6:1435–1444

    CAS  Google Scholar 

  • Mabrook MF, Pearson C, Petty MC (2006b) Inkjet-printed polypyrrole thin films for vapour sensing. Sens Actuators B Chem 115:547–551

    CAS  Google Scholar 

  • Mabrook MF, Pearson C, Jombert AS, Zeze DA, Petty MC (2009) The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon 47:752–757

    CAS  Google Scholar 

  • Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic, Boston

    Google Scholar 

  • Maklin J, Mustonen T, Halonen N, Toth G, Kordas K, Vahakangas J, Moilanen H, Kukovecz A, Konya Z, Haspel H, Gingl Z, Heszler P, Vajtai R, Ajayan PM (2008) Inkjet printed resistive and chemical-FET carbon nanotube gas sensors. Phys Status Solidi B 245:2335–2338

    CAS  Google Scholar 

  • Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972

    CAS  Google Scholar 

  • Malkin AY, Siling MI (1991) Scientific principles of present-day and future technologies of synthesis and processing polycondensation polymers. Rev Polymer Sci 33:2135–2160

    Google Scholar 

  • Marek J, Trah H-P, Suzuki Y, Yokomori I (eds) (2003) Sensors for automotive technology. VCH, Weinheim

    Google Scholar 

  • Matsumoto Y, Yoshida K, Ishida M (1998) A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices. Sens Actuators A Phys 66:308–314

    CAS  Google Scholar 

  • Miccoci G, Serra A, Siciliano P, Tepore A, Ali-Adib Z (1996) CO sensing characteristics of reactively sputtered SnO2 thin films prepared under different oxygen partial pressure values. Vacuum 47:1175–1177

    Google Scholar 

  • Miller JS (ed) (1982) Catalysis and electrocatalysis. Am. Chem. Soc. Symp. Ser. vol 192. American Chemical Society, Washington, DC

    Google Scholar 

  • Milchev A (2008) Electrocrystallization: Nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem 44:619–645

    Google Scholar 

  • Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  • Morrison SR (1994) Chemical sensors. In: Sze SM (ed) Semiconductor sensors. Wiley, New York, NY, pp 404–408

    Google Scholar 

  • Moseley PT, Tofield BC (eds) (1987) Solid state gas sensors. Adam Hilger, Bristol

    Google Scholar 

  • Moseley PT, Norris JOW, Williams DE (1991) Techniques and mechanisms in gas sensing. Adam Hilger, Bristol

    Google Scholar 

  • Nakaso K, Han B, Ahn KH, Choi M, Okuyama K (2003) Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. J Aerosol Sci 34:869–881

    CAS  Google Scholar 

  • Narendar Y, Messing GL (1997) Mechanisms of phase separation in gel-based synthesis of multicomponent metal oxides. Catal Today 35:247–268

    CAS  Google Scholar 

  • Nayral C, Viala E, Fau P, Senocq F, Jumas JC, Maisonnat A, Chaudret B (2000) Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. Chem Eur J 6:4082–4090

    CAS  Google Scholar 

  • Nenov TG, Yordanov SP (1996) Ceramic sensors: technology and applications. Technomic, Basel

    Google Scholar 

  • Niesen TP, De Guire MR (2001) Review: deposition of ceramic thin films at low temperatures from aqueous solutions. J Electroceram 6:169–207

    CAS  Google Scholar 

  • Olding T, Sayer M, Barrow D (2001) Ceramic sol-gel composite coatings for electrical insulation. Thin Solid Films 398–399:581–586

    Google Scholar 

  • Olvera ML, Maldonaldo A, Asomoza R (1996) Characterization of a thin film tin oxide gas sensor deposited by chemical spraying. AIP Conf Proc 378:376–381

    Google Scholar 

  • Osada Y, DeRossi DE (eds) (2000) Polymer sensors and actuators. Springer, Berlin

    Google Scholar 

  • O’Toole M, Shepherd R, Wallace GG, Diamond D (2009) Inkjet printed LED based pH chemical sensor for gas sensing. Anal Chim Acta 652(1–2):308–314

    Google Scholar 

  • Oyabu T (1982) Sensing characteristic of SnO2 thin film gas sensors. J Appl Phys 53:2785–2787

    CAS  Google Scholar 

  • Palatnik LS, Fuks MI, Kosevich VM (1972) Mechanism of formation and substructure of condensed films. Science, Moscow (in Russian)

    Google Scholar 

  • Pashchanka M, Gurlo A, Prasad RM, Nicoloso N, Riedel R, Schneider JJ (2012) Inkjet printed In2O3 and In2O3/CNT hybrid microstructures for future gas sensing application. In: Proceedings of the 14th international meeting on chemical sensors, IMCS 2012, Nuremberg, 20–23 May, 791–794

    Google Scholar 

  • Peter C, Kneer J, Wöllenstein J (2011) Inkjet printing of titanium doped chromium oxide for gas sensing application. Sens Lett 9(2):807–811

    CAS  Google Scholar 

  • Phillips HM, Li Y, Bi X, Zhang B (1996) Reactive pulsed laser deposition and laser induced crystallization of SnO2 transparent conducting thin films. Appl Phys A 63:347–351

    CAS  Google Scholar 

  • Pique A, Auyeung RCY, Stepnowsk JL, Weir DW, Arnold CB, McGill RA, Chrisey DB (2003) Laser processing of polymer thin films for chemical sensor applications. Surf Coat Technol 163–164:293–299

    Google Scholar 

  • Randhaw H (1991) Review of plasma-assisted deposition processes. Thin Solid Films 196:329–349

    Google Scholar 

  • Risti M, Ivanda M, Popovi S, Musi S (2002) Dependence of nanocrystalline SnO2 particle size on synthesis route. J Non-Crystal Solids 303:270–280

    Google Scholar 

  • Reisinger JJ, Hillmyer MA (2002) Synthesis of fluorinated polymers by chemical modification. Prog Polym Sci 27:971–1005

    CAS  Google Scholar 

  • Rumyantseva MN, Labeau M, Senateur JP, Delabouglise G, Boulova MN, Gaskov AM (1996) Influence of copper on sensor properties of tin dioxide films in H2S. Mater Sci Eng B 41:228–234

    Google Scholar 

  • Saadeddin I, Pecquenard B, Manaud JP, Decourt R, Abrugère C, Buffeteau T, Campet G (2007) Synthesis and characterization of single- and co-doped SnO2 thin films for optoelectronic applications. Appl Surf Sci 253:5240–5249

    CAS  Google Scholar 

  • Sahner K, Tuller HL (2010) Novel deposition techniques for metal oxide: prospects for gas sensing. J Electroceram 24:177–199

    CAS  Google Scholar 

  • Sangaletti L, Depero LE, Allieri B, Pioselli F, Angelucci R, Poggi A, Tagliani T, Nicoletti S (1999) Microstructural development in pure and V-doped SnO2 nanopowders. J Eur Ceram Soc 19:2073–2077

    CAS  Google Scholar 

  • Sayago I, Gutierrer FJ, Ares L, Robla JI, Horrillo MC, Getino J, Rino J, Agapito JA (1995a) The effect of additives in tin oxide on the sensitivity and selectivity to NO x and CO. Sens Actuators B Chem 26:19–23

    CAS  Google Scholar 

  • Sayago I, Gutierrer J, Ares L, Robla JI, Horrillo MC, Getino J, Rino J, Agapito JA (1995b) Long-term reliability of sensors for detection of nitrogen oxides. Sens Actuators B Chem 26:56–58

    CAS  Google Scholar 

  • Sberveglieri G (ed) (1992) Gas sensors. Kluwer, Dordrecht

    Google Scholar 

  • Sberveglieri G, Faglia G, Groppelli S, Nelli P, Taroni A (1992) A novel PVD technique for the preparation of SnO2 thin-films as C2H5OH sensors. Sens Actuators B Chem 7:721–726

    CAS  Google Scholar 

  • Sberveglieri G, Nelli P, Benussi GP, Depero LE, Zocchi M, Rossetto G, Zanella P (1993) Enhanced response to methane for SnO2 thin films prepared with the CVD technique. Sens Actuators B Chem 15–16:334–337

    Google Scholar 

  • Schierbaum KD, Vaihinger S, Gopel W (1990) Prototype structure for systematic investigations of thin-film gas sensors. Sens Actuators B Chem 1:171–175

    CAS  Google Scholar 

  • Schoenholzer U, Hummel R, Gauckler LJ (2000) Microfabrication of ceramics by filling of photoresist molds. Adv Mater 12:1261–1263

    Google Scholar 

  • Simon I, Barsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B Chem 73:1–26

    CAS  Google Scholar 

  • Sinner-Hettenbach M (2000) SnO2 (110) and nano-SnO2: characterization by surface analytical techniques. Ph.D. thesis, University of Tübingen

    Google Scholar 

  • Skolheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York, NY

    Google Scholar 

  • Small WR, Panhuis M (2007) Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3:1500–1503

    CAS  Google Scholar 

  • Song K-H, Park SJ (1994) Factors determining the carbon monoxide sensing properties of tin oxide thick films calcined at different temperatures. J Am Ceram Soc 77:2935–2939

    CAS  Google Scholar 

  • Spannhake J, Helwig A, Schulz O, Muller G (2009) Micro-fabrication of gas sensors. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, Berlin, pp 1–46

    Google Scholar 

  • Stryhal Z, Pavlik J, Novak S, Mackova A, Perina V, Veltruska K (2002) Investigations of SnO2 thin films prepared by plasma oxidation. Vacuum 67:665–671

    CAS  Google Scholar 

  • Suchea M, Katsarakis N, Christoulakis S, Nikolopoulou S, Kiriakidis G (2006) Low temperature indium oxide gas sensors. Sens Actuators B Chem 118:135–141

    CAS  Google Scholar 

  • Tahar RBH, Ban T, Ohya Y, Takahashi Y (1997) Optical, structural and electrical properties of indium oxide thin films prepared by the sol-gel method. J Appl Phys 82:865–870

    Google Scholar 

  • Takada T (2001) A temperature drop on exposure to reducing gases for various metal oxide thin films. Sens Actuators B Chem 77:307–311

    CAS  Google Scholar 

  • Takashima K, Minami K, Esashib M, Nishizawa J (1994) Laser projection CVD using the low temperature condensation method. Appl Surf Sci 79/81:366–374

    Google Scholar 

  • Tay BK, Zhao ZW, Chua DHC (2006) Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater Sci Eng R 52:1–48

    Google Scholar 

  • Tiburcio-Silver A, Sanchez-Juarez A (2004) Regeneration processes study on spray-pyrolyzed SnO2 thin films exposed to CO-loaded air. Sens Actuators B Chem 102:174–177

    CAS  Google Scholar 

  • Tiemann M (2008) Repeated templating. Chem Mater 20:961–971

    CAS  Google Scholar 

  • Troczynski T, Yang Q (2001) Process for making chemically bonded sol-gel ceramics. US Patent 6,284,682, May 2001

    Google Scholar 

  • Vahlas C, Caussat B, Serp P, Angelopoulos GN (2006) Principles and applications of CVD powder technology. Mater Sci Eng R 53:1–72

    Google Scholar 

  • Vandrish G (1996) Ceramic applications in gas and humidity sensors. Key Eng Mater 122–124:185–224

    Google Scholar 

  • Van Tassel JJ, Randall CA (2006) Mechanism of electrophoretic deposition. In: Boccaccini AR, Van der Biest O, Clasen R (eds) Electrophoretic deposition: fundamentals and applications. Trans Tech Publications, Zurich

    Google Scholar 

  • Vayssieres L (2007) An aqueous solution approach to advanced metal oxide arrays on substrates. Appl Phys A 89:1–8

    CAS  Google Scholar 

  • Vincenzi D, Butturi MA, Stefancich M, Malagu C, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Vasiliev AA, Pisliakov AV (2001) Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques. Thin Solid Films 391:288–292

    CAS  Google Scholar 

  • Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285

    Google Scholar 

  • Vuong DD, Sakai G, Shimanoe K, Yamazoe N (2004) Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. Sens Actuators B Chem 103:386–391

    CAS  Google Scholar 

  • White NM, Turner JD (1997) Thick-film sensors: past, present and future. Meas Sci Technol 8:1–20

    CAS  Google Scholar 

  • Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ion 131:79–96

    CAS  Google Scholar 

  • Williams G, Coles GSV (1993) NO x response of tin dioxide based gas sensors. Sens Actuators B Chem 15–16:349–353

    Google Scholar 

  • Williams G, Coles GSV (1995) The influence of deposition parameters on the performance of tin dioxide NO2 sensors prepared by radio-frequency magnetron sputtering. Sens Actuators B Chem 25:469–473

    CAS  Google Scholar 

  • Willmott PR (2004) Deposition of complex multielemental thin films. Prog Surf Sci 76:163–217

    CAS  Google Scholar 

  • Windle J, Derby B (1999) Ink jet printing of PZT aqueous ceramic suspensions. J Mater Sci Lett 18:87–90

    CAS  Google Scholar 

  • Wu Q, Lee K-M, Lin C-C (1993) Development of chemical sensors using microfabrication and micromachining techniques. Sens Actuators B Chem 13–14:1–6

    Google Scholar 

  • Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Hierarchically ordered oxides. Science 282:2244–2246

    CAS  Google Scholar 

  • Yang H, Deschatelets P, Brittain ST, Whitesides GM (2001) Fabrication of high performance ceramic microstructures from a polymeric precursor using soft lithography. Adv Mater 13:54–58

    Google Scholar 

  • Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet printed antennas and carbon nanotubes for gas detection applications. IEEE Antennas Wireless Propagat Lett 8:653–656

    Google Scholar 

  • Yamazoe N, Miura N (1992) Some basic aspects of semiconductor gas sensors. In: Yamauchi S (ed) Chemical sensor technology, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Yu KN, Xiong X, Liu Y, Xiong C (1997) Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys Rev B 55:2666–2671

    CAS  Google Scholar 

  • Yue Y, Gao Z (2000) Synthesis of mesoporous TiO2 with crystalline frame work. Chem Commun 1755–1756

    Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    CAS  Google Scholar 

  • Zakrzewska K (2001) Mixed oxides as gas sensors. Thin Solid Films 391:229–238

    CAS  Google Scholar 

  • Zeigler JM, Fearon FWG (eds) (1990) Silicon based polymer science: a comprehensive resource. ACS advances in chemistry series No. 224. American Chemical Society, Washington, DC

    Google Scholar 

  • Zhao X, Evans JRG, Edirisinghe MJ (2002) Direct ink-jet printing of vertical walls. J Am Ceram Soc 85:2113–2115

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Technologies Suitable for Gas Sensor Fabrication. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_28

Download citation

Publish with us

Policies and ethics