Advertisement

Technological Limitations in Sensing Material Applications

  • Ghenadii Korotcenkov
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Good technological effectiveness and processibility is an important criterion in selecting a material for gas sensor. Present short chapter considers this issue in relation to the various gas sensing materials such as polymers, solid electrolytes and 1D nanostructures. Chapter includes 2 figures, 1 Table and 39 references.

Keywords

Solid Electrolyte Silicon Device Silicon Technology Metallic Tube Sensor Fabrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adachi G, Imanaka N, Tamura S (2001) Rare earth ion conduction in solids. J Alloys Compd 323–324:534–539CrossRefGoogle Scholar
  2. Arthur JA (2002) Molecular beam epitaxy. Surf Sci 500:189–217CrossRefGoogle Scholar
  3. Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors. A status report. Fresenius J Anal Chem 365:287–304CrossRefGoogle Scholar
  4. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118CrossRefGoogle Scholar
  5. Brinker CJ, Scherer GW (1989) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, New YorkGoogle Scholar
  6. Bunshah RF (ed) (1994) Handbook of deposition technologies for films and coatings, 2nd edn. Noyes, Park Ridge, NJGoogle Scholar
  7. Chang CY, Sze SM (eds) (1996) ULSI technology. McGraw-Hill, New YorkGoogle Scholar
  8. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2003) A route for bulk separation of semiconducting from metallic single wall carbon nanotubes. J Am Chem Soc 125:3370–3375CrossRefGoogle Scholar
  9. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170CrossRefGoogle Scholar
  10. Christen HM, Eres G (2008) Recent advances in pulsed-laser deposition of complex oxides. J Phys Condens Matter 20:264005CrossRefGoogle Scholar
  11. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709CrossRefGoogle Scholar
  12. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24CrossRefGoogle Scholar
  13. Dubbe A (2003) Fundamentals of solid state ionic micro gas sensors. Sens Actuators B 88:138–148CrossRefGoogle Scholar
  14. Glocker DA, Shah I (eds) (1995) Handbook of thin film process technology. Institute of Physics, Bristol, UKGoogle Scholar
  15. Hecht G, Richter F, Hahn J (eds) (1994) Thin films. DGM Informationgessellschaft, Oberursel, GermanyGoogle Scholar
  16. Hitchman ML, Jensen KF (1993) CVD: principles and applications. Academic, San Diego, CAGoogle Scholar
  17. Hubbard KJ, Schlom DG (1996) Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 11:2757–2776CrossRefGoogle Scholar
  18. Hull R (ed) (1999) Properties of crystalline silicon. INSPEC, LondonGoogle Scholar
  19. Imanaka N, Kobayashi Y, Tamura S, Adachi G (2000) Trivalent ion conducting solid electrolytes. Solid State Ionics 136(137):319–324CrossRefGoogle Scholar
  20. Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrostat 66:197–219CrossRefGoogle Scholar
  21. Jia QX, Wu XD, Zhou DS, Foltyn SR, Tiwari P, Peterson D, Mitchell TE (1995) Deposition of epitaxial yttria-stabilized zirconia on single-crystal Si and subsequent growth of an amorphous SiO2 interlayer. Philos Mag Lett 72:385–391CrossRefGoogle Scholar
  22. Kondo H, Saji K, Takahashi H, Takeuchi M (1993) Thin-film air fuel ratio sensor. Sens Actuators B 13(14):49–52CrossRefGoogle Scholar
  23. Kong J, Dai H (2001) Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem B 105:2890–2893CrossRefGoogle Scholar
  24. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39CrossRefGoogle Scholar
  25. Korotcenkov G (ed) (2010) Chemical sensors: fundamentals of sensing materials. Vol. 1. General approaches. Momentum, New YorkGoogle Scholar
  26. Krupke R, Hennrich F, Lohneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347CrossRefGoogle Scholar
  27. Milchev A (2008) Electrocrystallization: nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem 44:619–645CrossRefGoogle Scholar
  28. Nenov TG, Yordanov SP (1996) Ceramic sensors: technology and applications. Technomic, BaselGoogle Scholar
  29. Pratt CM (2003) Effects of metal ions on the synthesis and properties of conducting polymers. PhD thesis, Kingston University, London, UKGoogle Scholar
  30. Prusseit W, Corsepius S, Zwerger M, Berberich P, Kinder H, Eibl O, Jaekel C, Breuer U, Kurz H (1992) Epitaxial YBa2Cu3O7−δ films on silicon using YSZ/Y2O3 buffer layers. Physica C 201:249–256CrossRefGoogle Scholar
  31. Randhaw H (1991) Review of plasma-assisted deposition processes. Thin Solid Films 196:329–349CrossRefGoogle Scholar
  32. Saji K, Kondo H, Takahashi H, Futata H, Angata K, Suzuki T (1993) Development of a thin-film oxygen sensor for combustion control of gas appliances. Sens Actuators B 13(14):695–696CrossRefGoogle Scholar
  33. Sze SM (ed) (1994) Semiconductor sensors. Wiley, New YorkGoogle Scholar
  34. Tiemann M (2008) Repeated templating. Chem Mater 20:961–971CrossRefGoogle Scholar
  35. Van Tassel JJ, Randall CA (2006) Mechanisms of electrophoretic deposition. Key Eng Mater 314:167–174CrossRefGoogle Scholar
  36. Vayssieres L (2007) An aqueous solution approach to advanced metal oxide arrays on substrates. Appl Phys A 89:1–8CrossRefGoogle Scholar
  37. Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285CrossRefGoogle Scholar
  38. Wang ZL (2004) Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu Rev Phys Chem 55:159–196CrossRefGoogle Scholar
  39. Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131:79–96CrossRefGoogle Scholar
  40. Zheng M, Jagota A, Semke ED, Diner BA, McClean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations