Instability of 1D Nanostructures

  • Ghenadii Korotcenkov
Part of the Integrated Analytical Systems book series (ANASYS)


In many papers it was concluded that the using of 1-D structures in conductometric gas sensors can resolve the problem of thermal and temporal stability, i.e. the problem of temporal drift of operating characteristics. However, analysis carried out in present chapter shows that the problems of thermal stability are also peculiar to all types of 1-D structure, including metal oxide and semiconductor nanowires, carbon-based nanotubes and nanofibers. This means that prospects of the 1-D structures using for elaboration of devices aimed for working at higher temperature (such as conductometric gas sensors) should be estimated more realistically. Chapter includes 6 figures, 1 Table and 49 references.


Oxidative Stability Polycrystalline Material Metal Oxide Nanoparticles Semiconductor Nanowires Individual Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362:522–525CrossRefGoogle Scholar
  2. Alivisatos AP (1997) Nanocrystals: building blocks for modern materials design. Endeavour 21(2):56–60CrossRefGoogle Scholar
  3. Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Holmes W, Files B, Yowell L (2004) Protocol for the characterization of single-wall carbon nanotube material quality. Carbon 42:1783–1791CrossRefGoogle Scholar
  4. Boccaleri E, Arrais A, Frache A, Gianelli W, Fino P, Camino G (2006) Comprehensive spectral and instrumental approaches for the easy monitoring of features and purity of different carbon nanostructures for nanocomposite applications. Mater Sci Eng B 131:72–82CrossRefGoogle Scholar
  5. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2:615–619CrossRefGoogle Scholar
  6. Cabria I, Mintmire JW, White CT (2003) Stability of narrow zigzag carbon nanotubes. Int J Quantum Chem 91:51–56CrossRefGoogle Scholar
  7. Churka WA, Inghram MG (1953) Molecular species evaporating from a carbon surface. J Chem Phys 21:1313–1319Google Scholar
  8. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568(1–2):28–40CrossRefGoogle Scholar
  9. Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871CrossRefGoogle Scholar
  10. Fathi D, Forouzandeh B (2009) A novel approach for stability analysis in carbon nanotube interconnects. IEEE Electron Device Lett 30(5):475–477CrossRefGoogle Scholar
  11. Guisbiers G, Pereira S (2007) Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures. Nanotechnology 18:435710CrossRefGoogle Scholar
  12. Hernandez-Ramirez F, Prades JD, Tarancon A, Barth S, Casals O, Jimenez-Diaz R, Pellicer E, Rodriguez J, Juli MA, Romano-Rodriguez A, Morante JR, Mathur S, Helwig A, Spannhake J, Mueller G (2007a) Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18:495501CrossRefGoogle Scholar
  13. Hernandez-Ramırez F, Tarancon A, Casals O, Arbiol J, Romano-Rodrıguez A, Morante JR (2007b) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B Chem 121:3–17CrossRefGoogle Scholar
  14. Jiang Q, Shi FG (1998) Entropy for solid–liquid transition in nanocrystals. Mater Lett 37:79–82CrossRefGoogle Scholar
  15. Jiang Q, Liang LH, Li JC (2004) Thermodynamic superheating of low-dimensional metals embedded in matrix. Vacuum 72:249–255CrossRefGoogle Scholar
  16. Joshi A, Nimmagadda R, Herrington J (1990) Oxidation kinetics of diamond, graphite, and chemical vapor deposited diamond films by thermal gravimetry. J Vac Sci Technol A 8:2137CrossRefGoogle Scholar
  17. Köck A, Tischner A, Maier T, Kast M, Edtmaier C, Gspan C, Kothleitner G (2009) Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection. Sens Actuators B Chem 138:160–167CrossRefGoogle Scholar
  18. Kolmakov A (2008) Some recent trends in fabrication, functionalisation and characterization of metal oxide nanowire gas sensors. Int J Nanotechnol 5:450–474CrossRefGoogle Scholar
  19. Li S, Lian JS, Jiang Q (2008a) Modeling size and surface effects on ZnS phase selection. Chem Phys Lett 455:202–206CrossRefGoogle Scholar
  20. Li S, Lian JS, Jiang Q (2008b) Thermodynamic phase stability of three nano-oxides. Mater Res Bull 43:3149–3154CrossRefGoogle Scholar
  21. Li Z, Lin W, Moon K-S, Wilkins SJ, Yao Y, Watkins K, Morato L, Wong C (2011) Metal catalyst residues in carbon nanotubes decrease the thermal stability of carbon nanotube/silicone composites. Carbon 49:4138–4148CrossRefGoogle Scholar
  22. Lopez MJ, Rubio A, Alonso JA, Lefrant S, Metenier K, Bonnamy S (2002) Patching and tearing single wall carbon-nanotube ropes into multiwall carbon nanotubes. Phys Rev Lett 89:255501-1–255501-4Google Scholar
  23. López MJ, Rubio A, Alonso JA (2004) Deformations and thermal stability of carbon nanotube ropes. IEEE Trans Nanotechnol 3(2):230–236CrossRefGoogle Scholar
  24. Lu X, Ausman KD, Piner RD, Ruoff RS (1999) Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air. J Appl Phys 86:186–189CrossRefGoogle Scholar
  25. Lucas AA, Lambin PH, Smalley RE (1993) On the energetic of tubular fullerenes. J Phys Chem Solids 54:587–593CrossRefGoogle Scholar
  26. Marsh DH, Rance GA, Zaka MH, Whitby RJ, Khlobystov AN (2007) Comparison of the stability of multiwalled carbon nanotube dispersions in water. Phys Chem Chem Phys 9:5490–5496CrossRefGoogle Scholar
  27. Miyamoto Y, Berber S, Yoon M, Rubio A, Tomanek D (2002) Onset of nanotube decay under extreme thermal and electronic excitations. Physica B 323:78–85CrossRefGoogle Scholar
  28. Miyata Y, Kawai T, Miyamoto Y, Yanagi K, Maniwa Y, Kataura H (2007) Bond-curvature effect on burning of single-wall carbon nanotubes. Physica Status Solidi B 244:4035–4039CrossRefGoogle Scholar
  29. Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208CrossRefGoogle Scholar
  30. Nikolaev P, Thess A, Rinzler AG, Colbert DT, Smalley RE (1997) Diameter doubling of single-wall nanotubes. Chem Phys Lett 266:422–426CrossRefGoogle Scholar
  31. Peng L-M, Zhang ZL, Xue ZQ, Wu QD, Gu ZN, Pettifor DG (2000) Stability of carbon nanotubes: how small can they be? Phys Rev Lett 85(15):3249–3252CrossRefGoogle Scholar
  32. Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S, Xu N, Ding Y, Wang Z (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88:203101CrossRefGoogle Scholar
  33. Sawada S, Hamada N (1992) Energetics of carbon nanotubes. Solid State Commun 83:917–919CrossRefGoogle Scholar
  34. Shim J-H, Lee B-J, Cho YW (2002) Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf Sci 512:262–268CrossRefGoogle Scholar
  35. Singh DK, Iyer PK, Giri PK (2010) Diameter dependence of oxidative stability in multiwalled carbon nanotubes: role of defects and effect of vacuum annealing. J Appl Phys 108:084313-10Google Scholar
  36. Sysoev V, Button B, Wepsiec K, Dmitriev S, Kolmakov A (2006) Toward the nanoscopic “electronic nose”: hydrogen vs. carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 6(8):1584–1588CrossRefGoogle Scholar
  37. Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem 139:699–703CrossRefGoogle Scholar
  38. Terrones M, Terrones H, Banhart F, Charlier J-C, Ajayan PM (2000) Coalescence of single-walled carbon nanotubes. Science 288:1226–1229CrossRefGoogle Scholar
  39. Toimil Molares ME, Balogh AG, Cornelius TW, Neumann R, Trautmann C (2004) Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett 85(22):5337–5339CrossRefGoogle Scholar
  40. Tsang SC, Harris PJF, Green MLH (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362:520–522CrossRefGoogle Scholar
  41. Wang XW, Fei GT, Wu B, Chen L, Chu ZQ (2006) Structural stability of Co nanowire arrays embedded in the PAAM. Phys Lett A 359:220–222CrossRefGoogle Scholar
  42. Wei X, Wang M-S, Bando Y, Golberg D (2011) Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. Sci Technol Adv Mater 12:044605CrossRefGoogle Scholar
  43. Wu Y, Yang P (2001) Melting and welding semiconductor nanowires in nanotubes. Adv Mater 13(7):520–523CrossRefGoogle Scholar
  44. Xie D, Wang MP, Qi WH, Cao LF (2006) Thermal stability of indium nanocrystals: a theoretical study. Mater Chem Phys 96:418–421CrossRefGoogle Scholar
  45. Xu F, Sun LX, Zhang J, Qi YN, Yang LN, Ru HY, Wang CY, Meng X, Lan XF, Jiao QZ, Huang FL (2010) Thermal stability of carbon nanotubes. J Therm Anal Calorim 102:785–791CrossRefGoogle Scholar
  46. Yao N, Lordi V, Ma SXC, Dujardin E, Krishnan A, Treacy MMJ, Ebbesen TW (1998) Structure and oxidation patterns of carbon nanotubes. J Mater Res 13:2432–2437CrossRefGoogle Scholar
  47. Zhang F, Barrowcliff R, Hsu ST (2005) Thermal stability of IrO2 nanowires. In: Proceedings of the international conference on MEMS, NANO and smart systems (ICMENS ‘05), IEEE Computer Society, Banff, Alberta, 24–27 July, pp 418–420Google Scholar
  48. Zhao M, Zhou XH, Jiang Q (2001) Comparison of different models for melting point change of metallic nanocrystals. J Mater Res 16(11):3304–3308CrossRefGoogle Scholar
  49. Zhou W, Ooi YH, Russo R, Papanek P, Luzzi DE, Fischer JE, Bronikowski MJ, Willis PA, Smalley RE (2001) Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem Phys Lett 350:6–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations