Skip to main content

Disadvantages of Nanocomposites for Application in Gas Sensors

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 4028 Accesses

Abstract

This short chapter analyzes disadvantages of nanocomposites for application in gas sensors. It is shown that complication the gas sensing matrix composition can be accompanied by deterioration of sensor parameters’ reproducibility. Incompatibility of materials used in nanocomposite can also be a reason of sensors parameters worsening. In addition, it should be taken into account that sometimes the increase of sensitivity of devices, elaborated on the base of nanocomposites, is being attained at the expense of worsening other exploitation parameters of sensors. Chapter includes 3 figures and 17 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim. Acta 143:1–12

    Google Scholar 

  • Gas’kov AM, Rumyantseva MN (2001) Nature of gas sensitivity in nanocrystalline metal oxides. Russ J Appl Chem 74(3):440–444

    Article  Google Scholar 

  • Gas’kov A, Rumyantseva M (2009) Metal oxide nanocomposites: synthesis and characterization in relation with gas sensing phenomena. In: Baraton MI (ed) Sensors for environment, health and security. Springer Science + Business Media B.V, Dordrecht, The Netherlands, pp 3–29

    Chapter  Google Scholar 

  • Ivanovskaya M, Kotsikau D, Faglia G, Nelli P (2003) Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sens Actuators B 96:498–503

    Article  CAS  Google Scholar 

  • Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxides: state of the art and approaches. Sens Actuators B 107:209–232

    Article  CAS  Google Scholar 

  • Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678

    Article  CAS  Google Scholar 

  • Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement. Sens Actuators B 156:527–538

    Article  CAS  Google Scholar 

  • Korotcenkov G, Boris I, Brinzari V, Luchkovsky Y, Karkotsky G, Golovanov V, Cornet A, Rossinyol E, Rodriguez J, Cirera A (2004) Gas sensing characteristics of one-electrode gas sensors on the base of doped In2O3 ceramics. Sens Actuators B 103:13–22

    Article  CAS  Google Scholar 

  • Liu L, Guo C, Li L, Wang L, Dong Q, Li W (2010) Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens Actuators B 150:806–810

    Article  CAS  Google Scholar 

  • Pagnier T, Boulova M, Galerie A, Gaskov A, Lucazeau G (2000) Reactivity of SnO2-CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study. Sens Actuators B 71:134–139

    Article  CAS  Google Scholar 

  • Pavelko RG, Vasiliev AA, Llobet E, Sevastyanov VG, Kuznetsov NT (2012) Selectivity problem of SnO2 based materials in the presence of water vapors. Sens Actuators B 170:51–59

    Article  CAS  Google Scholar 

  • Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  CAS  Google Scholar 

  • Tamaki J, Maekawa T, Miura N, Yamazoe N (1992) CuO-SnO2 element for highly sensitive and selective detection of H2S. Sens Actuators B 9:197–203

    Article  CAS  Google Scholar 

  • Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18:1969–1976

    Article  CAS  Google Scholar 

  • Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669

    Article  CAS  Google Scholar 

  • Zhang S, Yongqing DS, Du FH (2003a) Recent advances of superhard nanocomposite coatings: a review. Surf Coat Technol 167:13–119

    Google Scholar 

  • Zhang W, Chen D, Zhao Q, Fang Y (2003b) Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites. Polymer 44(1):7953–7961

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Disadvantages of Nanocomposites for Application in Gas Sensors. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_17

Download citation

Publish with us

Policies and ethics