Polymer-Based Composites

  • Ghenadii Korotcenkov
Part of the Integrated Analytical Systems book series (ANASYS)


Present chapter analyzes polymer-based composites, which give possibility to design high sensitive conductometric gas sensors able to operate at room temperature. Studies showed that various fillers such as metal particles, graphite nanoplatelets (GNP), carbon black, carbon nantotubes, and graphene could be used as a viable and inexpensive filler substitute for preparing polymer-based composites. In this chapter one can also find the description of approaches used for composites preparing, and mechanisms of conductivity change under influence of gas surrounding. Dependence of percolation threshold from the concentration, shape and nature of conducting particles are analyzed as well. Problems related to application of polymer-based composites in gas sensors are analyzed as well. Chapter includes 4 figures, 4 Tables and 68 references.


Permeability Surfactant Graphite Manifold Toluene 


  1. Abraham JK, Philip B, Witchurch A, Varadan VK, Channa RC (2004) A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater Struct 13(5):1045–1049CrossRefGoogle Scholar
  2. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626CrossRefGoogle Scholar
  3. Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173CrossRefGoogle Scholar
  4. Athawale AA, Bhagwat SV, Katre PP (2006) Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens Actuators B 114:263–267CrossRefGoogle Scholar
  5. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307CrossRefGoogle Scholar
  6. Belmaraes M, Blanco M, Goddard WA II, Ross RB, Caldwell G, Chou S-H, Pham J, Olofson PM, Thomas C (2004) Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem 25:1814–1826CrossRefGoogle Scholar
  7. Brady S, Lau KT, Megill W, Wallace GG, Diamond D (2005) The development and characterisation of conducting polymeric-based sensing devices. Synth Met 154:25–28CrossRefGoogle Scholar
  8. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17(9):1186–1191CrossRefGoogle Scholar
  9. Carrillo A, Martin-Dominguez IR, Rosas A, Marquez A (2002) Numerical method to evaluate the influence of organic solvent absorption on the conductivity of polymeric composites. Polymer 43:6307–6313CrossRefGoogle Scholar
  10. Cespedes F, Martinez-Fabregas E, Alegret S (1996) New materials for electrochemical sensing I. Rigid conducting composites. Trends Anal Chem 15(7):296–304CrossRefGoogle Scholar
  11. Chen J, Tsubokawa N (2000) Electric properties of conducting composite from poly(ethylene oxide) and poly(ethylene oxide)-grafted carbon black in solvent vapor. Polym J 32(9):729–736CrossRefGoogle Scholar
  12. Chen J, Yang J, Yan X, Xue Q (2010) NH3 and HCl sensing characteristics of polyaniline nanofibers deposited on commercial ceramic substrates using interfacial polymerization. Synth Metals 160:2452–2458CrossRefGoogle Scholar
  13. Cho SM, Kim YJ, Kim YS, Yang Y, Ha S-C (2004) The application of carbon nanotube—polymer composite as gas sensing materials. In: Proceedings of IEEE sensors conference, sensors 2004, vol. 2. pp 701–704Google Scholar
  14. Densakulprasert N, Wannatong L, Chotpattananont D, Hiamtup P, Sirivat A, Schwank J (2005) Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Mater Sci Eng B 117:276–282CrossRefGoogle Scholar
  15. Du J-H, Bai J, Cheng H-M (2007) The present status and key problems of carbon nanotube based polymer composites. eXPRESS Polym Lett 1(5):253–273CrossRefGoogle Scholar
  16. Flahaut E, Peigney A, Laurent C, Marliere C, Chastel F, Rousset A (2000) Carbon nanotube–metal oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812CrossRefGoogle Scholar
  17. Freund MS, Lewis NS (1995) A chemically diverse conduction polymer-based “electronic nose”. Proc Natl Acad Sci USA 92:2652–2656CrossRefGoogle Scholar
  18. Fukushima H, Drzal LT (2003) A carbon nanotube alternative: graphite nanoplatelets as reinforcements for polymers. Annu Tech Conf Soc Plast Eng 61:2230–2234Google Scholar
  19. Hands PJW, Laughlin PJ, Bloor D (2012) Metal–polymer composite sensors for volatile organic compounds: part 1. Flow-through chemiresistors. Sens Actuators B 162:400–408CrossRefGoogle Scholar
  20. He L, Jia Y, Meng F, Li M, Liu J (2009) Gas sensors for ammonia detection based on polyaniline coated multiwall carbon nanotubes. Mater Sci Eng B 163:76–81CrossRefGoogle Scholar
  21. Heaney MB (1995) Measurement and interpretation of nonuniversal critical exponents in disordered conductor–insulator composites. Phys Rev B 52:12477–12480CrossRefGoogle Scholar
  22. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859CrossRefGoogle Scholar
  23. Ho CK, Hughes RC (2002) In situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors 2:23–34CrossRefGoogle Scholar
  24. Ho CK, Lindgren ER, Rawlinson KS, McGrath LK, Wright JL (2003) Development of a surface acoustic wave sensor for in situ monitoring of volatile organic compounds. Sensors 3:236–247CrossRefGoogle Scholar
  25. Hwang BJ, Yang JY, Lin CW (1999) A microscopic gas-sensing model for ethanol sensors based on conductive polymer composites from polypyrrole and poly(ethylene oxide). J Electrochem Soc 146:1231–1236CrossRefGoogle Scholar
  26. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47:480–488CrossRefGoogle Scholar
  27. Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052CrossRefGoogle Scholar
  28. Grate JW, Abraham MH (1991) Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens Actuators B 3:85–111CrossRefGoogle Scholar
  29. Kim JS, Sohn SO, Huh JS (2005) Fabrication and sensing behavior of PVF2 coated-polyaniline sensor for volatile organic compounds. Sens Actuators B 108:409–413CrossRefGoogle Scholar
  30. Kim YS, Wright JB, Grunlan JC (2008) Influence of polymer modulus on the percolation threshold of latex-based composites. Polymers 49:570–578Google Scholar
  31. Kotov NA (2006) Materials science: carbon sheet solutions. Nature 442:254–255CrossRefGoogle Scholar
  32. Lee J, Choi J, Hong J, Jung D, Shim SE (2010) Conductive silicone/acetylene black composite films as chemical vapour sensors. Synth Met 160:1030–1035CrossRefGoogle Scholar
  33. Lei H, Pitt WG, McGrath LK, Ho CK (2007) Modeling carbon black/polymer composite sensors. Sens Actuators B 125:396–407CrossRefGoogle Scholar
  34. Li L, Luo Y, Li Z (2007) The preparation and vapour-induced response of a conductive nanocomposite based on poly(methyl acrylic acid)/expanded graphite by in situ polymerization. Smart Mater Struct 16:1570–1574CrossRefGoogle Scholar
  35. Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS (1996) Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater 8:2298–2312CrossRefGoogle Scholar
  36. Lundberg B, Sundqvist B (1986) Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment—applications as a pressure and gas concentration transducer. J Appl Phys 60:1074–1079CrossRefGoogle Scholar
  37. Marquez A, Uribe J, Cruz R (1997) Conductivity variation induced by solvent swelling of an elastomer-carbon black-graphite composite. J Appl Polym Sci 66:2221–2232CrossRefGoogle Scholar
  38. Martin JE, Anderson RA, Odinek J, Adolf D, Williamson J (2003) Controlling percolation in field structured particle composites: observations of giant thermoresistance, piezoresistance and chemiresistance. Phys Rev B 67:094207CrossRefGoogle Scholar
  39. Matsuguchi M, Gsugiyama JI, Sakai Y (2002) Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth Metals 128:15–19CrossRefGoogle Scholar
  40. Middlehoek S, Audet SA (1989) Silicon sensors for chemical signals. Academic, BostonGoogle Scholar
  41. Ogura K, Saino T, Nakayama M, Shiigi H (1997) The humidity dependence of the electrical conductivity of a soluble polyaniline-poly(vinyl alcohol) composite film. J Mater Chem 7:2363–2366CrossRefGoogle Scholar
  42. Pan W, Yang SL, Li G, Jiang JM (2005) Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites. Eur Polym J 41:2127–2133CrossRefGoogle Scholar
  43. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  44. Philip B, Abraham JK, Chandrasekhar A, Varadan VK (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12:935–939CrossRefGoogle Scholar
  45. Potts JR, Dreyer DR, Bielawski CW, Ruof RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25CrossRefGoogle Scholar
  46. Rivera D, Alam MK, Davis CE, Ho CK (2003) Characterization of the ability of polymeric chemiresistor arrays to quantitate trichloroethylene using partial least squares (PLS): effects of experimental design, humidity, and temperature. Sens Actuators B 92:110–120CrossRefGoogle Scholar
  47. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRefGoogle Scholar
  48. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899CrossRefGoogle Scholar
  49. Santhanam KSV, Sangoi R, Fuller L (2005) A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene). Sens Actuators B 106:766–771CrossRefGoogle Scholar
  50. Segal E, Tchoudakov R, Narkis M, Siegmann A, Wei Y (2005) Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols. Sens Actuators B 104:140–150CrossRefGoogle Scholar
  51. Silverstein MS, Tai HW, Sergienko A, Lumelsky YL, Pavlovsky S (2005) PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors. Polymer 46:6682–6694CrossRefGoogle Scholar
  52. Sisk BC, Lewis NS (2003) Estimation of chemical and physical characteristics of analyte vapours through analysis of the response data of arrays of polymer-carbon black composite vapour detectors. Sens Actuators B 96:268–282CrossRefGoogle Scholar
  53. Suri K, Annapoorni S, Sarkar AK, Tandon RP (2002) Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens Actuators B 81:277–282CrossRefGoogle Scholar
  54. Sutar DS, Padma N, Aswal DK, Deshpande SK, Gupta SK, Yakhmi JV (2007) Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sens Actuators B 128:286–292CrossRefGoogle Scholar
  55. Tongpool R, Yoriya S (2005) Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors. Thin Solid Films 477:148–152CrossRefGoogle Scholar
  56. Tsubokawa N, Tsuchida M, Chen J, Nakazawa Y (2001) A novel contamination sensor in solution: the response of the electric resistance of a composite based on crystalline polymer-grafted carbon black. Sens Actuators B 79:92–97CrossRefGoogle Scholar
  57. Valentini L, Bavastrello V, Stura E, Armentano I, Nicolini C, Kenny JM (2004) Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chem Phys Lett 383(5–6):617–622CrossRefGoogle Scholar
  58. Unde S, Ganu J, Radhakrishnan S (1996) Conducting polymer-based chemical sensor: characteristics and evaluation of polyaniline composite films. Adv Mater Opt Electron 6:151–157CrossRefGoogle Scholar
  59. Wanna Y, Srisukhumbowornchai N, Tuantranont A, Wisitsoraat A, Thavarungkul N, Singjai P (2006) The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. J Nanosci Nanotechnol 6(12):3893–3896CrossRefGoogle Scholar
  60. Watcharaphalakorn S, Ruangchuay L, Chotpattahanont D, Sirivat A, Schwank J (2005) Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N2 mixtures. Polym Int 54:1126–1133CrossRefGoogle Scholar
  61. Wienecke M, Bunescu M-C, Pietrzak M, Deistung K, Fedtke P (2003) PTFE membrane electrodes with increased sensitivity for gas sensor applications. Synthetic Met 138(1–2):165–171CrossRefGoogle Scholar
  62. Wohltjen H, Barger WR, Snow AW, Jarvis NL (1985) A vapor-sensitive chemiresistor fabricated with planar micro electrodes and a Langmuir–Blodgett organic semiconductor film. IEEE Trans Electron Dev ED-32:1170–1174CrossRefGoogle Scholar
  63. Wojkiewicz JL, Bliznyuk VN, Carquigny S, Elkamchi N, Redon N, Lasri T, Pud AA, Reynaud S (2011) Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sens Actuators B 160:1394–1403CrossRefGoogle Scholar
  64. Yang X, Li L, Yan F (2010) Polypyrrole/silver composite nanotubes for gas sensors. Sens Actuators B 145:495–500CrossRefGoogle Scholar
  65. Zee F, Judy JW (2001) Micromachined polymer-based chemical array. Sens Actuators B 72:120–128CrossRefGoogle Scholar
  66. Zhang B, Fu R, Zhang M, Dong X, Zhao B, Wang L, Pitman CU Jr (2006) Studies of the vapour-induced sensitivity of hybrid components fabricated by filling polystyrene with carbon black and carbon nanofibers. Composites A 37:1884–1889CrossRefGoogle Scholar
  67. Zhang B, Dong X, Song W, Wu D, Fu R, Zhao B, Zhang M (2008a) Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. Sens Actuators B 132:60–66CrossRefGoogle Scholar
  68. Zhang B, Dong X, Fu R, Zhao B, Zhang M (2008b) The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapours. Comp Sci Technol 68:1357–1362CrossRefGoogle Scholar
  69. Zeng HC (2003) Carbon nanotube-based nanocomposites. In: Nalwa HS (ed) Handbook of organic hybrid materials and nanocomposites. American Scientific Publisher, Valencia, CA, pp 151–180Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ghenadii Korotcenkov
    • 1
  1. 1.Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuKorea, Republic of (South Korea)

Personalised recommendations