Skip to main content

Metal–Organic Frameworks

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Metal-organic frameworks (MOFs) can be ascribed to the class of metallo-complexes (MC) discussed in previous chapter. MOFs, also referred to as porous coordination polymers (PCPs), are relatively new highly porous hybrid organic-inorganic crystalline supramolecular materials composed of ordered networks formed from organic electron-donor linkers and metal cations via coordination bonds. Present chapter gives description of these materials and analyzes their possible applications in gas sensors. Methods of MOFs synthesis as well as limitations of MOFs applications in gas sensors are also discussed. Chapter includes 6 figures, 3 Tables and 70 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achmann S, Hagen G, Kita J, Malkowsky IM, Kiener C, Moos R (2009a) Metal-organic frameworks for sensing applications in the gas phase. Sensors 9:1574–1589

    Article  CAS  Google Scholar 

  • Achmann S, Hagen G, Moos R, Malkowsky I, Kiener C (2009b) Metal-organic framework for sensing applications in the gas phase. In: Proceedings of Sensor+Test conference-sensor 2009, vol 2, pp 417–420

    Google Scholar 

  • Allendorf MD, Houk RJT, Andruszkiewicz L, Talin AA, Pikarsky J, Choudhury A, Gall KA, Hesketh PJ (2008) Stress-induced chemical detection using flexible metal−organic frameworks. J Am Chem Soc 130:14404–14405

    Article  CAS  Google Scholar 

  • Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38:1330–1352

    Article  CAS  Google Scholar 

  • Allendorf MD, Schwartzberg A, Stavila V, Talin AA (2011) A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Chem Eur J 17:11372–11388

    Article  CAS  Google Scholar 

  • An JY, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal−organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223

    Article  CAS  Google Scholar 

  • Barbour LJ (2006) Crystal porosity and the burden of proof. Chem Commun 2006:1163–1168

    Article  Google Scholar 

  • Beauvais LG, Shores MP, Long JR (2000) Cyano-bridged Re6Q8 (Q = S, Se) cluster-cobalt(II) framework materials: versatile solid chemical sensors. J Am Chem Soc 122:2763–2772

    Article  CAS  Google Scholar 

  • Biemmi E, Darga A, Stock N, Bein T (2008) Direct growth of Cu3(BTC)2(H2O)3 · xH2O thin films on modified QCM-gold electrodes—water sorption isotherms. Microporous Mesoporous Mater 114:380–386

    Article  CAS  Google Scholar 

  • Burrows AD, Frost CG, Mahon MF, Richardson C (2008) Post-synthetic modification of tagged metal-organic frameworks. Angew Chem 47:8610–8614

    Article  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  • Chen B, Xiang S, Qian G (2010a) Metal−organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Article  CAS  Google Scholar 

  • Chen Z, Xiang S, Arman HD, Li P, Zhao D, Chen B (2010b) A microporous metal–organic framework with immobilized–OH functional groups within the pore surfaces for selective gas sorption. Eur J Inorg Chem 24:3745–3749

    Article  Google Scholar 

  • Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n . Science 283:1148–1150

    Article  CAS  Google Scholar 

  • Cohen SM (2011) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000

    Article  Google Scholar 

  • Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850

    Article  CAS  Google Scholar 

  • Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023

    Google Scholar 

  • Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, Keeffe MO, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    Article  CAS  Google Scholar 

  • Fang Q-R, Makal TA, Young MD, Zhou H-C (2010) Recent advances in the study of mesoporous metal-organic frameworks. Commun Inorg Chem 31:165–195

    Article  CAS  Google Scholar 

  • Ferey C, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki IA (2005) Chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Article  CAS  Google Scholar 

  • Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Article  CAS  Google Scholar 

  • Garibay SJ, Cohen SM (2010) Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun 46:7700–7702

    Article  CAS  Google Scholar 

  • Greathouse JA, Allendorf MD (2006) The interaction of water with MOF-5 simulated by molecular dynamics. J Am Chem Soc 128(40):13312

    Article  CAS  Google Scholar 

  • Gu Z-Y, Wang G, Yan X-P (2010) MOF-5 metal−organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Anal Chem 82:1365–1370

    Article  CAS  Google Scholar 

  • Gu Z-Y, Yang C-X, Chang N, Yan X-P (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45(5):734–745

    Article  CAS  Google Scholar 

  • He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B (2012) A microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. Chem Eur J 18:613–619

    Article  CAS  Google Scholar 

  • Hinterholzinger FM, Ranft A, Feckl H, Bein T, Lotsch BT (2012) One-dimensional metal-organic framework photonic crystals used as platforms for vapor sensing. J Mater Chem 22:10356–10362

    Article  CAS  Google Scholar 

  • Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111:5962–5964

    Article  CAS  Google Scholar 

  • Huang LM, Wang HT, Chen JX, Wang ZB, Sun JY, Zhao DY, Yan YS (2003) Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mesoporous Mater 58:105–114

    Article  CAS  Google Scholar 

  • Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177

    Article  CAS  Google Scholar 

  • Kent CA, Liu D, Ma L, Papanikolas JM, Meyer TJ, Lin W (2011) Light harvesting in microscale metal–organic frameworks by energy migration and interfacial electron transfer quenching. J Am Chem Soc 133(33):12940–12943

    Article  CAS  Google Scholar 

  • Keskin S, Kizilel S (2011) Biomedical applications of metal organic frameworks. Ind Eng Chem Res 50:1799–1812

    Article  CAS  Google Scholar 

  • Khoshaman AH, Bahreyni B (2012) Application of metal organic framework crystals for sensing of volatile organic gases. Sens Actuators B 162:114–119

    Article  CAS  Google Scholar 

  • Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  • Kitagawa S, Noro S-I, Nakamura T (2006) Pore surface engineering of microporous coordination polymers. Chem Commun 2006:701–707

    Article  Google Scholar 

  • Kleist W, Jutz F, Maciejewski M, Baiker A (2009) Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur J Inorg Chem 2009:3552–3561

    Article  Google Scholar 

  • Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4] · xH2O}n (M) Co, Ni, Zn. Angew Chem Int Ed Engl 36:1725–1727

    Article  CAS  Google Scholar 

  • Kreno LE, Hupp JT, Van Duyne RP (2010) Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem 82:8042–8046

    Article  CAS  Google Scholar 

  • Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Google Scholar 

  • Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou H-C (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066

    Article  CAS  Google Scholar 

  • Kusgens P, Rose M, Senkovska I, Frode H, Henschel A, Siegle S, Kaskel S (2009) Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater 120:325–330

    Article  Google Scholar 

  • Lan A, Li K, Wu H, Olson DH, Emge TJ, Ki W, Hong M, Li J (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338

    Article  CAS  Google Scholar 

  • Lee H, Jung SH, Han WS, Moon JH, Kang S, Lee JY, Jung JH, Shinkai SA (2011) Chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chem-Eur J 17:2823–2827

    Article  CAS  Google Scholar 

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  • Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar SG, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in Cu3(BTC)2: an effective activation procedure. J Phys Chem C 111:9305–9313

    Article  CAS  Google Scholar 

  • Lu G, Hupp JT (2010) Metal−organic frameworks as sensors: a ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833

    Article  CAS  Google Scholar 

  • Lu Z-Z, Zhang R, Li Y-Z, Guo Z-J, Zheng H-G (2011) Solvatochromic behavior of a nanotubular metal−organic framework for sensing small molecules. J Am Chem Soc 133:4172–4174

    Article  CAS  Google Scholar 

  • MacGillivray LR (ed) (2010) Metal-organic frameworks: design and application. Wiley, Hoboken, NJ

    Google Scholar 

  • Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267

    Article  CAS  Google Scholar 

  • Mintova S, Mo SY, Bein T (2001) Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem Mater 13:901–905

    Article  CAS  Google Scholar 

  • Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal organic framework. CrystEngComm 8:211–214

    Article  CAS  Google Scholar 

  • Pramanik S, Zheng C, Zhang X, Emge TJ, Li J (2011) New microporous metal−organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J Am Chem Soc 133:4153–4155

    Article  CAS  Google Scholar 

  • Qiu L-G, Li Z-Q, Wu Y, Wang W, Xu T, Jiang X (2008) Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun 2008:3642–3644

    Article  Google Scholar 

  • Ranocchiari M, Lothschütz C, Grolimund D, van Bokhoven JA (2012) Single-atom active sites on metal-organic frameworks. Proc R Soc A 2012(0078):1–15

    Google Scholar 

  • Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater 73:15–30

    Article  CAS  Google Scholar 

  • Rowsell JLC, Yaghi O (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

    Article  CAS  Google Scholar 

  • Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong H-K (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199

    Article  CAS  Google Scholar 

  • Shekhah O, Liu J, Fischer RA, Woll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106

    Article  CAS  Google Scholar 

  • Sudik AC, Millward AR, Ockwig NW, Côté AP, Kim J, Yaghi OM (2005) Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J Am Chem Soc 127:7110–7118

    Article  CAS  Google Scholar 

  • Tanabe KK, Cohen SM (2009) Engineering a metal-organic framework catalyst by using postsynthetic modification. Angew Chem Int Ed 48:7424–7427

    Article  CAS  Google Scholar 

  • Thomas KM (2009) Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans (9):1487–1505

    Google Scholar 

  • Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S, Woo TK (2010) Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330:650–653

    Article  CAS  Google Scholar 

  • Venkatasubramanian A, Lee J-H, Houk RJ, Allendorf MD, Nair S (2010) Characterization of HKUST-1 crystals and their application to MEMS microcantilever array sensors. ECS Trans 33(8):229–238

    Article  CAS  Google Scholar 

  • Wang QM, Shen DM, Bulow M, Lau ML, Deng SG, Fitch FR, Lemcoff NO, Semanscin J (2002) Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55:217–230

    Article  CAS  Google Scholar 

  • Wang L, Reis A, Seifert A, Philippi T, Ernst S, Jia M, Thiel WR (2009) A simple procedure for the covalent grafting of triphenylphosphine ligands on silica: application in the palladium catalyzed Suzuki reaction. Dalton Trans 17:3315–3320

    Article  Google Scholar 

  • Xie Z, Ma L, de Krafft KE, Jin A, Lin W (2009) Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 132:922–923

    Article  Google Scholar 

  • Yaghi OM, Li HL (1995) Hydrothermal synthesis of a metal organic framework containing large rectangular channels. J Am Chem Soc 117:10401–10402

    Article  CAS  Google Scholar 

  • Yaghi OM, O’Keeffe MO, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  • Zacher D, Schmid R, Woll C, Fischer RA (2011) Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew Chem Int Ed 50:176–199

    Article  CAS  Google Scholar 

  • Zou X, Zhu G, Hewitt IJ, Sun F, Qiu S (2009) Synthesis of a metal-organic framework film by direct conversion technique for VOCs. Dalton Trans 2009:3009–3013

    Article  Google Scholar 

  • Zybaylo O, Shekhah O, Wang H, Tafipolsky M, Schmid R, Johannsmann D, Woll C (2010) A novel method to measure diffusion coefficients in porous metal–organic frameworks. Phys Chem Chem Phys 12:8092–8097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). Metal–Organic Frameworks. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_11

Download citation

Publish with us

Policies and ethics