A Turnpike Result for Discrete-Time Optimal Control Systems

  • Alexander J. Zaslavski
Part of the Springer Optimization and Its Applications book series (SOIA, volume 82)


In this chapter we study a turnpike property of approximate solutions for a general class of discrete-time control systems without discounting and with a compact metric space of states. This class of control systems is identified with a complete metric space of objective functions. We show that for a generic objective function approximate solutions of the corresponding control system possess the turnpike property.


  1. 7.
    Aubry S, Le Daeron PY (1983) The discrete Frenkel-Kontorova model and its extensions I. Phys D 8:381–422MathSciNetzbMATHCrossRefGoogle Scholar
  2. 37.
    Gale D (1967) On optimal development in a multi-sector economy. Rev Econ Stud 34:1–18MathSciNetCrossRefGoogle Scholar
  3. 46.
    Leizarowitz A (1985) Infinite horizon autonomous systems with unbounded cost. Appl Math Opt 13:19–43MathSciNetzbMATHCrossRefGoogle Scholar
  4. 47.
    Leizarowitz A (1986) Tracking nonperiodic trajectories with the overtaking criterion. Appl Math Opt 14:155–171MathSciNetzbMATHCrossRefGoogle Scholar
  5. 48.
    Leizarowitz A, Mizel VJ (1989) One dimensional infinite horizon variational problems arising in continuum mechanics. Arch Ration Mech Anal 106:161–194MathSciNetzbMATHCrossRefGoogle Scholar
  6. 51.
    Makarov VL, Rubinov AM (1977) Mathematical theory of economic dynamics and equilibria. Springer, New YorkzbMATHCrossRefGoogle Scholar
  7. 58.
    McKenzie LW (1976) Turnpike theory. Econometrica 44:841–866MathSciNetzbMATHCrossRefGoogle Scholar
  8. 76.
    Rubinov AM (1984) Economic dynamics. J Sov Math 26:1975–2012zbMATHCrossRefGoogle Scholar
  9. 77.
    Samuelson PA (1965) A catenary turnpike theorem involving consumption and the golden rule. Amer Econ Rev 55:486–496Google Scholar
  10. 83.
    Zaslavski AJ (1987) Ground states in Frenkel-Kontorova model. Math USSR Izvestiya 29:323–354CrossRefGoogle Scholar
  11. 84.
    Zaslavski AJ (1995) Optimal programs on infinite horizon 1. SIAM J Contr Optim 33:1643–1660MathSciNetzbMATHCrossRefGoogle Scholar
  12. 85.
    Zaslavski AJ (1995) Optimal programs on infinite horizon 2. SIAM J Contr Optim 33:1661–1686MathSciNetzbMATHCrossRefGoogle Scholar
  13. 99.
    Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New YorkzbMATHGoogle Scholar
  14. 102.
    Zaslavski AJ (2007) Turnpike results for a discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal 67:2024–2049MathSciNetzbMATHCrossRefGoogle Scholar
  15. 105.
    Zaslavski AJ (2009) Two turnpike results for a discrete-time optimal control systems. Nonlinear Anal 71:902–909MathSciNetCrossRefGoogle Scholar
  16. 107.
    Zaslavski AJ (2012) A generic turnpike result for a class of discrete-time optimal control systems. Dynam Contin Discrete Impuls Syst Ser B 19:225–265MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexander J. Zaslavski
    • 1
  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations