Uniform Boundedness of Approximate Solutions of Variational Problems

  • Alexander J. Zaslavski
Part of the Springer Optimization and Its Applications book series (SOIA, volume 82)


In this chapter, given an \(x_{0} \in {R}^{n}\) we study the infinite horizon problem of minimizing the expression \(\int _{0}^{T}f(t,x(t),x^{\prime}(t))dt\) as T grows to infinity where \(x : [0,\infty ) \rightarrow {R}^{n}\) satisfies the initial condition x(0) = x 0. We analyze the existence and properties of approximate solutions for every prescribed initial value x 0.


  1. 7.
    Aubry S, Le Daeron PY (1983) The discrete Frenkel-Kontorova model and its extensions I. Phys D 8:381–422MathSciNetzbMATHCrossRefGoogle Scholar
  2. 48.
    Leizarowitz A, Mizel VJ (1989) One dimensional infinite horizon variational problems arising in continuum mechanics. Arch Ration Mech Anal 106:161–194MathSciNetzbMATHCrossRefGoogle Scholar
  3. 55.
    Marcus M, Zaslavski AJ (1999) The structure of extremals of a class of second order variational problems. Ann Inst H Poincaré Anal Non linéaire 16:593–629MathSciNetzbMATHCrossRefGoogle Scholar
  4. 56.
    Marcus M, Zaslavski AJ (2002) The structure and limiting behavior of locally optimal minimizers. Ann Inst H Poincaré Anal Non linéaire 19:343–370MathSciNetzbMATHCrossRefGoogle Scholar
  5. 66.
    Moser J (1986) Minimal solutions of variational problems on a torus. Ann Inst H Poincaré Anal Non linéaire 3:229–272zbMATHGoogle Scholar
  6. 83.
    Zaslavski AJ (1987) Ground states in Frenkel-Kontorova model. Math USSR Izvestiya 29:323–354CrossRefGoogle Scholar
  7. 95.
    Zaslavski AJ (2004) Existence and uniform boundedness of approximate solutions of variational problems without convexity assumptions. Dynam Syst Appl 13:161–178MathSciNetzbMATHGoogle Scholar
  8. 99.
    Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexander J. Zaslavski
    • 1
  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations