Skip to main content

Poincaré Plot Interpretation of HRV Using Physiological Model

  • Chapter
  • First Online:
Poincaré Plot Methods for Heart Rate Variability Analysis

Abstract

In this chapter, we present new results in developing a novel mathematical model that describes the interactions between the sympathetic and the parasympathetic nervous systems and heart rate fluctuations over a short-term period of 5–10 min. While our model is based upon well-accepted physiological principles, the mathematical formulation permits in-depth numerical and analytical investigations yielding valuable insight into clinical RR interval analysis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.M. Sayers, Analysis of heart rate variability. Ergonomics 16(1), 17–32 (1973)

    Article  PubMed  CAS  Google Scholar 

  2. B. Pomeranz, R.J. Macaulay, M.A. Caudill, I. Kutz, D. Adam, D. Gordon, K.M. Kilborn, A.C. Barger, D.C. Shannon, R.J. Cohen, H. Benson, Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 248(1), H151–H153 (1985)

    PubMed  CAS  Google Scholar 

  3. M.A. Woo, W.G. Stevenson, D.K. Moser, H.R. Middlekauff, Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. J. Am. Coll. Cardiol. 23(3), 565–569 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. P.W. Kamen, Heart rate variability. Aust. Fam. Physician 25, 1087–1094 (1996)

    PubMed  CAS  Google Scholar 

  5. P.W. Kamen, A.M. Tonkin, Application of the poincar plot to heart rate variability: a new measure of functional status in heart failure. Aust. NZ. J. Med. 25, 18–26 (1995)

    Article  CAS  Google Scholar 

  6. M.A. Woo, W.G. Stevenson, D.K. Moser, R.B. Trelease, R.M. Harper, Patterns of beat-to-beat heart rate variability in advanced heart failure. Am. Heart J. 123(3), 704–710 (1992)

    Article  PubMed  CAS  Google Scholar 

  7. P.W. Kamen, H. Krum, A.M. Tonkin. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci. 91, 201–208 (1996)

    PubMed  CAS  Google Scholar 

  8. R.D. Hyndman, R.K. Mohn, A model of the cardiac pacemaker and its use in decoding the information content of cardiac intervals. Automedica 1, 239–252 (1975)

    Google Scholar 

  9. R.W. De Boer, J.M. Karemaker, Spectrum of a series of point events generated by the integral pulse frequency modulation model. Med. Biol. Eng. Comput. 23, 138–142 (1985)

    Article  PubMed  Google Scholar 

  10. R.D. Berger, J.P. Saul, R.J. Cohen, Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am. J. Physiol. Heart Circ. Physiol. 256(1), H142–H152 (1989)

    CAS  Google Scholar 

  11. R.D. Berger, S. Askelrod, D. Gordon, R.J. Cohen, An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans. Biomed. Eng. 33, 900–904 (1986)

    Article  PubMed  CAS  Google Scholar 

  12. M.P. Tulppo, T.H. Makikallio, T.E.S. Takala, T. Seppanen, H.V. Huikuri,  Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 271, H244–H252 (1996)

    PubMed  CAS  Google Scholar 

  13. M. Brennan, M. Palaniswami, P. Kamen, Poincare plot interpretation using a physiological model of hrv based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol. 283, 1873–1886 (2002)

    Google Scholar 

  14. R.E. De Meersman, S.S. Reisman, M. Daum, R. Zorowitz, M. Leifer, T. Findley, Influence of respiration on metabolic, hemodynamic, psychometric, and r-r interval power spectral parameters. Am. J. Physiol. Heart Circ. Physiol. 269(4), H1437–H1440 (1995)

    Google Scholar 

  15. M.V. Hjgaard, N.-H. Holstein-Rathlou, E. Agner, J.K. Kanters, Dynamics of spectral components of heart rate variability during changes in autonomic balance. Am. J. Physiol. Heart Circ. Physiol. 275(1), H213–H219 (1998)

    Google Scholar 

  16. J.H. Warren, R.S. Jaffe, C.E. Wraa, C.L. Stebbins, Effect of autonomic blockade on power spectrum of heart rate variability during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273(2), R495–R502 (1997)

    CAS  Google Scholar 

  17. P. Sleight, M.T. La Rovere, A. Mortara, G. Pinna, R. Maestri, S. Leuzzi, B. Bianchini, L. Tavazzi, L. Bernardi, Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin. Sci. 88(1), 103–109 (1995)

    PubMed  CAS  Google Scholar 

  18. L.T. Mainardi, A.M. Bianchi, G. Baselli, S. Cerutti, Pole-tracking algorithms for the extraction of time-variant heart rate variability spectral parameters. IEEE Trans. Biomed. Eng. 42(3), 250–259 (1995)

    Article  PubMed  CAS  Google Scholar 

  19. A. Rosenblueth,  F.A. Simeone, The interrelations of vagal and accelerator effects on the cardiac rate. Am. J. Physiol. 110, 42–55 (1934)

    Google Scholar 

  20. J.J. Goldberger, Sympathovagal balance: how should we measure it? Am. J. Physiol. Heart Circ. Physiol. 276(4), H1273–H1280 (1999)

    CAS  Google Scholar 

  21. P.G. Katona, M. McLean, D.H. Dighton, A. Guz, Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J. Appl. Physiol. 52(6), 1652–1657 (1982)

    PubMed  CAS  Google Scholar 

  22. H. Otzenberger, C. Gronfier, C. Simon, A. Charloux, J. Ehrhart, F. Piquard, G. Brandenberger, Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am. J. Physiol. Heart Circ. Physiol. 275(3), H946–H950 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandoker, A.H., Karmakar, C., Brennan, M., Voss, A., Palaniswami, M. (2013). Poincaré Plot Interpretation of HRV Using Physiological Model. In: Poincaré Plot Methods for Heart Rate Variability Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7375-6_3

Download citation

Publish with us

Policies and ethics