Skip to main content

Health Monitoring of Engineering Systems

  • Chapter
  • First Online:

Abstract

Safety and reliability are increasingly important for modern complex engineering systems. However, no matter how good the system design is, system components deteriorate over time due to certain stress or load in operation. As a consequence, sophisticated and advanced techniques to detect and isolate faults in the monitored system become urgent needs in industry. This chapter aims to introduce the basic tasks of fault diagnosis and failure prognosis as well as their classifications. In the following of this chapter, recent developments in the field of fault diagnosis and prognosis are discussed, followed by the organization of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, Intelligent prognostics tools and e-maintenance. Comput. Ind. 57(6), 476–489 (2006)

    Article  Google Scholar 

  2. J.H. Luo, M. Namburu, K.R. Pattipati, L. Qiao, S. Chigusa, Integrated model-based and data-driven diagnosis of automotive antilock braking systems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 40(2), 321–336 (2010)

    Google Scholar 

  3. A.K. Samantaray, B. Ould Bouamama, Model-Based Process Supervision: A Bond Graph Approach (Springer, London, 2008)

    Google Scholar 

  4. S.X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Springer, Berlin, 2008)

    Google Scholar 

  5. C. Ghiaus, Fault diagnosis of air conditioning systems based on qualitative bond graph. Energy Build. 30(3), 221–232 (1999)

    Article  Google Scholar 

  6. B. Kuipers, Qualitative simulation. Artif. Intell. 29(3), 289–338 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Kuipers, Qualitative simulation as causal explanation. IEEE Trans. Syst. Man Cybern. 17(3), 432–445 (1987)

    Article  MathSciNet  Google Scholar 

  8. H.T. Ng, Model-based multiple fault diagnosis of time-varying, continuous physical devices. In the Sixth Conference on Artificial Intelligence Applications, vol. 1, May 1990, pp. 9–15

    Google Scholar 

  9. S. Subramanian, R. J. Mooney, Qualitative multiple-fault diagnosis of continuous dynamic systems using behavioral modes. In the 13th National Conference on, Artificial Intelligence, August 1996, pp. 965–970

    Google Scholar 

  10. Q. Shen, R.R. Leitch. Qualitative model based of continuous dynamic systems. In Proceedings of the First International Conference on Intelligent Systems Engineering, Heriot-Watt University, Edinburgh, 1992, pp. 147–152

    Google Scholar 

  11. E.E. Hurdle, L.M. Bartlett, J.D. Andrews, System fault diagnostics using fault tree analysis. J. Risk Reliab., Part O (Proc. IMechE) 221(1), 43–55 (2007)

    Google Scholar 

  12. M.G.M. Madden, P.J. Nolan, Monitoring and diagnosis of multiple incipient faults using fault tree induction. IEE Proc.-Control Theory Appl. 146(2), 204–212 (1999)

    Google Scholar 

  13. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput. Chem. Eng. 27(3), 293–311 (2003)

    Article  Google Scholar 

  14. S. Xia, D.A. Linkens, S. Bennette, Automatic modeling and analysis of dynamical physical systems using qualitative reasioning and bond graphs. Intell. Syst. Eng. 2(4), 201–212 (1993)

    Article  Google Scholar 

  15. D. A. Linkens, H. Wang, Fault diagnosis based on a qualitative bond graph model, with emphasis on fault localization. In IEE Colloquium on Qualitative and Quantitative Modeling Methods for Fault Diagnosis, pp. 1–6, 1995

    Google Scholar 

  16. C.H. Lo, Y.K. Wong, A.B. Rad, Model-based fault diagnosis in continuous dynamic systems. ISA Trans. 43(3), 459–475 (2004)

    Article  Google Scholar 

  17. C.H. Lo, Y.K. Wong, A.B. Rad, Intelligent system for process supervision and fault diagnosis in dynamic physical systems. IEEE Trans. Ind. Electron. 53(2), 581–592 (2006)

    Article  Google Scholar 

  18. C.H. Lo, Y.K. Wong, A.B. Rad, Fusion of qualitative bond graph and genetic algorithms: a fault diagnosis application. ISA Trans. 41(4), 445–456 (2002)

    Article  Google Scholar 

  19. J. Chen, R. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Kluwer Academic Publishers, Boston, 1999)

    Book  MATH  Google Scholar 

  20. S. Ehsan, K. Khashayar, Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach (Springer, New York, 2009)

    MATH  Google Scholar 

  21. H. Hammouri, M. Kinnaert, E.H. El Yaagoubi, Observer-based approach to fault detection and isolation for nonlinear systems. IEEE Trans. Autom. Control 44(10), 1879–1884 (1999)

    Article  MATH  Google Scholar 

  22. X. Ding, P.M. Frank, An adaptive observer-based fault detection scheme for nonlinear systems. In Proceedings of the 12th IFAC World Congress, Sydney, Australia, pp. 63–68, 1993

    Google Scholar 

  23. C. Edwards, S.K. Spurgeon, R.J. Patton, Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. C.P. Tan, C. Edwards, Robust fault reconstruction in uncertain linear systems using multiple sliding mode observers in cascade. IEEE Trans. Autom. Control 55(4), 855–867 (2010)

    Article  MathSciNet  Google Scholar 

  25. C.P. Tan, C. Edwards, Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control 13(5), 443–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. K.Y. Ng, C.P. Tan, C. Edwards, Y.C. Kuang, New results in robust actuator fault reconstruction in linear uncertain systems using sliding mode observers. Int. J. Robust Nonlinear Control 17(14), 1294–1319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.H. Lee, J. Lyou, Fault diagnosis and fault tolerant control of linear stochastic systems with unknown inputs. Syst. Sci. 27(3), 59–76 (2001)

    MathSciNet  Google Scholar 

  28. J. Sanjay, A new fast converging Kalman filter for sensor fault detection and isolation. Sens. Rev. 30(3), 219–224 (2010)

    Article  Google Scholar 

  29. N. Tudoroiu, K. Khorasani, Satellite fault diagnosis using a bank of interacting Kalman filters. IEEE Trans. Aerosp. Electron. Syst. 43(4), 1334–1350 (2007)

    Article  Google Scholar 

  30. A. Alessandri, M. Caccia, G. Veruggio, Fault detection of actuator faults in unmanned underwater vehicles. Control Eng. Pract. 7(3), 357–368 (1999)

    Article  Google Scholar 

  31. M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37(5), 687–699 (2001)

    MathSciNet  MATH  Google Scholar 

  32. S.K. Nguang, P. Zhang, S. Ding, Parity based fault estimation for nonlinear systems: An LMI approach. In Proceedings of American Control Conference, Minneapolis, USA, 2006, pp. 5141–5146

    Google Scholar 

  33. M.A. Djeziri, R. Merzouki, B. Ould Bouamama, Robust monitoring of an electric vehicle with structured and unstructured uncertainties. IEEE Trans. Veh. Technol. 58(9), 4710–4719 (2009)

    Article  Google Scholar 

  34. M.A. Djeziri, R. Merzouki, B. Ould-Bouamama, G. Dauphin-Tanguy, Robust fault diagnosis by using bond graph approach. IEEE/ASME Trans. Mechatron. 12(6), 599–611 (2007)

    Article  Google Scholar 

  35. C.B. Low, D. Wang, S. Arogeti, M. Luo, Quantitative hybrid bond graph-based fault detection and isolation. IEEE Trans. Autom. Sci. Eng. 7(3), 558–569 (2010)

    Article  Google Scholar 

  36. C.B. Low, D. Wang, S. Arogeti, J.B. Zhang, Causality assignment and model approximation for hybrid bond graph: fault diagnosis perspectives. IEEE Trans. Autom. Sci. Eng. 7(3), 570–580 (2010)

    Article  Google Scholar 

  37. S. Arogeti, D. Wang, C. B. Low, D. H. Zhang, J. Zhou. Mode tracking of hybrid systems in FDI framework. In the 3rd International Conference on Robotics Automation and, Mechatronics (RAM2008), 2008, pp. 841–846

    Google Scholar 

  38. S. Arogeti, D. Wang, C.B. Low. Mode tracking and FDI of hybrid systems. In the 10th International Conference on Control, Automation, 2008, pp. 112–118

    Google Scholar 

  39. C.B. Low, D. Wang, S. Arogeti, M. Luo. Fault parameter estimation for hybrid systems using hybrid bond graph. In the 3rd IEEE Multi-conference on Systems and Control (MSC 2009), 2009, pp. 1338–1343

    Google Scholar 

  40. R. Isermann, Fault diagnosis via parameter estimation and knowledge processing. Automatica 29(4), 815–835 (1994)

    Article  MathSciNet  Google Scholar 

  41. I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)

    Article  Google Scholar 

  42. J. Chen, R. Pattern, H. Zhang, Design of unknown input observers and robust fault detection filters. Int. J. Control 63(1), 85–105 (1996)

    Article  MATH  Google Scholar 

  43. S.F. Lin, A.P. Wang, Design of observers with unknown inputs using eignstructure assignment. Int. J. Syst. Sci. 31(6), 705–711 (2000)

    Article  MATH  Google Scholar 

  44. D.T. Horak, Failure detection in dynamic systems with modelling errors. J. Guidance Conrol Dyn. 131(6), 508–516 (1998)

    Google Scholar 

  45. Z. Shi, F. Gu, B. Lennox, A.D. Ball, The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system. Control Eng. Pract. 13(11), 1357–1367 (2005)

    Article  Google Scholar 

  46. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis Part III: process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  47. A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  48. M.C. Pan, P. Sas, H. Van Brussel, Machine condition monitoring using signal classification techniques. J. Vib. Control 9(10), 1103–1120 (2003)

    Article  MATH  Google Scholar 

  49. X. Lou, K.A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 18(5), 1077–1095 (2004)

    Article  Google Scholar 

  50. B.M. Ebrahimi, J. Faiz, Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring. IEEE Trans. Power Electron. 25(10), 2673–2682 (2010)

    Article  Google Scholar 

  51. Q. Wu, Fault diagnosis model based on Gaussian support vector classifier machine. Expert Syst. Appl. 37(9), 6251–6256 (2010)

    Article  Google Scholar 

  52. J.I. Park, S.H. Baek, M.K. Jeong, S.J. Bae, Dual features functional support vector machines for fault detection of rechargeable batteries. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(4), 480–485 (2009)

    Google Scholar 

  53. Y. Yao, F.R. Gao, Statistical monitoring and fault diagnosis of batch processes using two-dimensional dynamic information. Ind. Eng. Chem. Res. 49(20), 9961–9969 (2010)

    Article  Google Scholar 

  54. Q.P. He, J. Wang, Large-scale semiconductor process fault detection using a fast pattern recognition-based method. IEEE Trans. Semicond. Manuf. 23(2), 194–200 (2010)

    Article  Google Scholar 

  55. B. Li, M.Y. Chow, Y. Tipsuwan, J.C. Hung, Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 47(5), 1060–1069 (2000)

    Article  Google Scholar 

  56. Y. Fan, C.J. Li, Diagnostic rule extraction from trained feedforward neural networks. Mech. Syst. Signal Process. 16(6), 1073–1081 (2002)

    Article  Google Scholar 

  57. J.K. Spoerre, Application of the cascade correlation algorithm (CCA) to bearing fault classification problems. Comput. Ind. 32(3), 295–304 (1997)

    Article  Google Scholar 

  58. C.C. Wang, G.P.J. Too, Rotating machine fault detection based on HOS and artificial neural networks. J. Intell. Manuf. 13(4), 283–293 (2002)

    Article  Google Scholar 

  59. R.M. Tallam, T.G. Habetler, R.G. Harley, Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics. IEEE Trans. Power Electron. 17(6), 1089–1095 (2002)

    Article  Google Scholar 

  60. M. Stanek, M. Morari, K. Frohlich, Model-aided diagnosis: An inexpensive combination of model-based and case-based condition assessment. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 31(2), 137–145 (2001)

    Article  Google Scholar 

  61. B.S. Yang, T. Han, Y.S. Kim, Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis. Expert Syst. Appl. 26(3), 387–395 (2004)

    Article  Google Scholar 

  62. S. Sampath, S. Ogaji, R. Singh, D. Probert, Engine-fault diagnostics: an optimisation procedure. Appl. Energy 73(1), 47–70 (2002)

    Article  Google Scholar 

  63. B. Samanta, C. Nataraj, Use of particle swarm optimization for machinery fault detection. Eng. Appl. Artif. Intell. 22(2), 308–316 (2009)

    Article  Google Scholar 

  64. Q. Wu, Car assembly line fault diagnosis based on robust wavelet SVC and PSO. Expert Syst. Appl. 37(7), 5423–5429 (2010)

    Article  Google Scholar 

  65. G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems (John Wiley & Sons Inc., New Jersey, 2006)

    Book  Google Scholar 

  66. A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009)

    Article  Google Scholar 

  67. V. Venkatasubramanian, Prognostic and diagnostic monitoring of complex systems for product lifecycle management: challenges and opportunities. Comput. Chem. Eng. 29(6), 1253–1263 (2005)

    Article  Google Scholar 

  68. M. Luo, D. Wang, M. Pham. Model-based fault diagnosis/prognosis for wheeled mobile robots: a review. In the 31st Annual Conference of IEEE, 2005, pp. 2267–2272

    Google Scholar 

  69. A. Schomig, O. Rose, On the suitability of the Weibull distribution for the approximation of machine failures. In Proceedings of the Industrial Engineering Research Conference, Portland, USA, 2003

    Google Scholar 

  70. P.G. Groer, Analysis of time-to-failure with a Weibull model. In Proceedings of the Maintenance and Reliability Conference, Knoxville, USA, 2000, pp. 5901–5904

    Google Scholar 

  71. W. Li, Evaluating mean life of power system equipment with limited end-of-life failure data. IEEE Trans. Power Syst. 19(1), 236–242 (2004)

    Article  Google Scholar 

  72. Y. Li, T.R. Kurfess, S.Y. Liang, Stochastic prognostics for rolling element bearings. Mech. Syst. Signal Process. 14(5), 747–762 (2000)

    Article  Google Scholar 

  73. A. Ray, S. Tangirala, Stochastic modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Trans. Control Syst. Technol. 4(4), 443–451 (1996)

    Article  Google Scholar 

  74. D.E. Adams, M. Nataraju, A nonlinear dynamical systems framework for structural diagnosis and prognosis. Int. J. Eng. Sci. 40(17), 1919–1941 (2002)

    Article  Google Scholar 

  75. D. Chelidze, J.P. Cusumano, A. Chatterjee, Dynamical systems approach to damage evolution tracking-Part I: The experimental method. J. Vibr. Acoust. Trans. ASME 124(2), 250–257 (2002)

    Article  Google Scholar 

  76. J. Qiu, B.B. Set, S.Y. Liang, C. Zhang, Damage mechanics approach for bearing lifetime prognostics. Mech. Syst. Signal Process. 16(5), 817–829 (2002)

    Article  Google Scholar 

  77. J.H. Luo, K.R. Pattipati, L. Qiao, S. Chigusa, Model-based prognostic techniques applied to a suspension system. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(5), 1156–1168 (2008)

    Google Scholar 

  78. J.D. Kozlowski, C.S. Byington, A.K. Garga, M.J. Watson, T.A. Hay, Model-based predictive diagnostics for electrochemical energy sources. In Proceedings of the IEEE Aerospace Conference, vol. 6, 2001, pp. 3149–3164

    Google Scholar 

  79. J.H. Aylor, A. Thieme, B.W. Johnson, A battery state-ofcharge indicator for electric wheelchairs. IEEE Trans. Ind. Electron. 39(5), 398–409 (1992)

    Article  Google Scholar 

  80. O. Caumont, P.L. Moigne, C. Rombaut, X. Muneret, P. Lenain, Energy gauge for lead-acid batteries in electric vehicles. IEEE Trans. Energy Convers. 15(3), 354–360 (2000)

    Article  Google Scholar 

  81. C.J. Li, S. Choi, Spur gear root fatigue crack prognosis via crack diagnosis and fracture mechanics. In Proceedings of the 56th Meeting of the Society of Mechanical Failures Prevention Technology, Virginia Beach, 2002, pp. 311–320

    Google Scholar 

  82. C.J. Li, H. Lee, Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mech.l Syst. Signal Process. 19(3), 836–846 (2005)

    Google Scholar 

  83. R.F. Orsagh, J. Sheldon, C.J. Klenke, Prognostics/diagnostics for gas turbine engine bearings. In Proceedings of the IEEE Aerospace Conference, vol. 7, pp. 3095–3103

    Google Scholar 

  84. G.J. Kacprzynski, A. Sarlashkar, M.J. Roemer, A. Hess, B. Hardman, Predicting remaining life by fusing the physics of failure modeling with diagnostics. JOM J. Miner. Met. Mater. Soc. 56(2), 29–35 (2004)

    Article  Google Scholar 

  85. B. Zhang, C. Sconyers, R. Patrick, G. Vachtsevanos, A multi-fault modeling approach for fault diagnosis and failure prognosis of engineering systems. InAnnual Conference of the Prognostics and Health Management Society, 2009

    Google Scholar 

  86. C. Cempel, H.G. Natke, M. Tabaszewski, A passive diagnostic experiment with ergodic properties. Mechan. Syst. Signal Process. 11(1), 107–117 (1997)

    Article  Google Scholar 

  87. G.A. Lesieutre, L. Fang, U. Lee, Hierarchical failure simulation for machinery prognostics. In Joint Conference of the 51st Meeting of the SMFPT / 12th Biennial Conference on Reliability, Stress Analysis and Failure Prevention (RSAFP Committe of ASME), 1997, pp. 103–110

    Google Scholar 

  88. S.J. Engel, B.J. Gilmartin, K. Bongort, A. Hess, Prognostics, the real issues involved with predicting life remaining. In Proceedings of IEEE Aerospace Conference, vol. 6, 2000, pp. 457–469

    Google Scholar 

  89. X.S. Si, W.B. Wang, C.H. Hua, D.H. Zhou, Remaining useful life estimation–a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  Google Scholar 

  90. W. Batko. Prediction Method in Technical Diagnostics. PhD Thesis, Cracov Mining Academy, 1984

    Google Scholar 

  91. K. Kazmierczak. Application of autoregressive prognostic techniques in diagnostics. In Proceedings of the Vehicle Diagnostics Conference, 1983, pp. 128–134

    Google Scholar 

  92. W. Wang, F. Golnaraghi, F. Ismail, Prognosis of machine health condition using neuro-fuzzy systems. Mech. Syst. Signal Process. 18(4), 813–831 (2004)

    Article  Google Scholar 

  93. W. Wang, An adaptive predictor for dynamic system forecasting. Mech. Syst. Signal Process. 21(2), 809–823 (2007)

    Article  Google Scholar 

  94. N. Gebraeel, M. Lawley, R. Liu, V. Parmeshwaran, Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans. Ind. Electron. 51(3), 694–700 (2004)

    Article  Google Scholar 

  95. P. Wang, G. Vachtsevanos, Fault prognostics using dynamic wavelet neural networks. Artif. Intell. Eng. Des. Anal. Manuf. 15(4), 349–365 (2001)

    MATH  Google Scholar 

  96. N. Gebraeel, M. Lawley, A neural network degradation model for computing and updating residual life distributions. IEEE Trans. Autom. Sci. Eng. 5(1), 154–163 (2008)

    Article  Google Scholar 

  97. J.W. Sheppard, M.A. Kaufman, Bayesian diagnosis and prognosis using instrument uncertainty. In Proceedings of, AUTOTESTCON, 2005, pp. 417–423

    Google Scholar 

  98. C. Bunks, D. McCarthy, T. Al-Ani, Condition-based maintenance of machines using hidden Markov models. Mech. Syst. Signal Process. 14(4), 597–612 (2000)

    Article  Google Scholar 

  99. P. Baruah, R.B. Chinnam, HMMs for diagnostics and prognostics in machining processes. Int. J. Prod. Res. 43(6), 1275–1293 (2005)

    Article  MATH  Google Scholar 

  100. M. Orchard, G. Vachtsevanos, A particle filtering approach for on-line fault diagnosis and failure prognosis. Trans. Inst. Meas. Control 31(3), 221–246 (2009)

    Article  Google Scholar 

  101. X.D. Zhang, R. Xu, K. Chiman, S.Y. Liang, Q.L. Xie, L. Haynes, An integrated approach to bearing fault diagnostics and prognostics. In Proceedings of the American Control Conference, vol. 4, 2005, pp. 2750–2755

    Google Scholar 

  102. C. Kwan, X. Zhang, R. Xu, L. Haynes, A novel approach to fault diagnostics and prognostics. In Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, 2003, pp. 604–609

    Google Scholar 

  103. M.I. Mazhar, S. Kara, H. Kaebernick, Remaining life estimation of used components in consumer products: life cycle data analysis by Weibull and artificial neural networks. J. Oper. Manage. 25(6), 1184–1193 (2007)

    Article  Google Scholar 

  104. K.B. Goode, J. Moore, B.J. Roylance, Plant machinery working life prediction method utilizing reliability and condition-monitoring data. In Proceedings of Institution of Mechanical Engineers, vol. 214, 2000, pp. 109–122

    Google Scholar 

  105. A. Heng, A. Tan, J. Mathew, B.S. Yang, Machine prognosis with full utilization of truncated lifetime data. In Proceedings of the Second World Congress on Engineering Asset Management, Harrogate, UK, 2007, pp. 775–784

    Google Scholar 

  106. W. Wang, A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance. Int. J. Prod. Res. 38(6), 1425–1436 (2000)

    Article  MATH  Google Scholar 

  107. L. Dieulle, C. Berenguer, A. Grall, M. Roussignol, Sequential condition-based maintenance scheduling for a deteriorating system. Eur. J. Oper. Res. 150(2), 451–461 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, D., Yu, M., Low, C., Arogeti, S. (2013). Health Monitoring of Engineering Systems. In: Model-based Health Monitoring of Hybrid Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7369-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7369-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7368-8

  • Online ISBN: 978-1-4614-7369-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics