Skip to main content

Evaluation of Robotized TMS: The Current System in Practice

  • Chapter
  • First Online:
Book cover Robotized Transcranial Magnetic Stimulation
  • 931 Accesses

Abstract

We evaluate the current robotized Transcranial Magnetic Stimulation TMS system in practice in two brain research scenarios. For these studies, we take advantage of the robotized TMS system for accurate coil positioning. We investigate the influence of coil orientation on the stimulation outcome for the stimulation of the foot. Further, we study the impact of changes in the scalp-to-cortex distance on the MEP amplitude and therefore on the stimulation intensity. These studies show that robotized TMS is a powerful tool for brain research as it allows for very precise coil positioning and rotating in small steps. Without robotized TMS these studies are hardly possible with the same accuracy, repeatability and comparability. However, these studies also show deficits of the current robotized TMS system allowing only well-trained and experienced operators to effectively employ the robotized TMS system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awiszus, F.: TMS and threshold hunting. Suppl. Clin. Neurophysiol. 56, 13–23 (2003)

    Article  Google Scholar 

  2. Awiszus, F.: Fast estimation of transcranial magnetic stimulation motor threshold: Is it safe? Brain Stimul. 4(1), 58–59 (2011). doi:10.1016/j.brs.2010.09.004

  3. Awiszus, F., Borckardt, J.J.: TMS Motor Threshold Assessment Tool (2011). http://clinicalresearcher.org/software.htm, Version 2.0

  4. Balslev, D., Braet, W., McAllister, C., Miall, R.C.: Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. J. Neurosci. Methods 162(1—-2), 309–313 (2007). doi:10.1016/j.jneumeth.2007.01.021

    Article  Google Scholar 

  5. Bohning, D.E.: Introduction and overview of tms physics. In: George, M.S., Belmaker, R.H. (eds.) Transcranial Magnetic Stimulation in Neuropsychiatry, pp. 13–44. American Psychiatric Press, Washington (2000)

    Google Scholar 

  6. Brasil-Neto, J.P., Cohen, L.G., Panizza, M., Nilsson, J., Roth, B.J., Hallett, M.: Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J. Clin. Neurophysiol. 9(1), 132–136 (1992)

    Article  Google Scholar 

  7. Bremer, S., Richter, L., Oung, S., Schweikard, A., Trillenberg, P.: Roboternavigierte untersuchung der tiefenabhängigkeit der reizstärke bei der transkraniellen magnetstimulation. In: Fink, G. (ed.) 56. Jahrestagung der Deutschen Gesellschaft für Klinische Neurophysiologie und funktionelle Bildgebung, Klin Neurophysiol, vol. 43, p. 49. DGKN, Cologne (2012). doi:10.1055/s-0032-1301473

  8. Cai, W., George, J.S., Chambers, C.D., Stokes, M.G., Verbruggen, F., Aron, A.R.: Stimulating deep cortical structures with the batwing coil: How to determine the intensity for transcranial magnetic stimulation using coil-cortex distance. J. Neurosci. Methods 204(2), 238–241 (2012). doi:10.1016/j.jneumeth.2011.11.020

    Article  Google Scholar 

  9. Davey, N.J., Romaiguere, P., Maskill, D.W., Ellaway, P.H.: Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J. Physiol. (Lond.) 477(Pt 2), 223–235 (1994)

    Google Scholar 

  10. Fox, P.T., Narayana, S., Tandon, N., Sandoval, H., Fox, S.P., Kochunov, P., Lancaster, J.L.: Column-based model of electric field excitation of cerebral cortex. Hum. Brain Mapp. 22(1), 1–14 (2004)

    Article  Google Scholar 

  11. Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L.G., Mall, V., Kaelin-Lang, A., Mima, T., Rossi, S., Thickbroom, G.W., Rossini, P.M., Ziemann, U., Valls-Solé, J., Siebner, H.R.: A practical guide to diagnostic transcranial magnetic stimulation: Report of an ifcn committee. Clin. Neurophysiol. (2012). doi:10.1016/j.clinph.2012.01.010

  12. Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U., Topka, H.: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin. Neurophysiol. 112(2), 250–258 (2001)

    Article  Google Scholar 

  13. Langguth, B., Zowe, M., Landgrebe, M., Sand, P., Kleinjung, T., Binder, H., Hajak, G., Eichhammer, P.: Transcranial magnetic stimulation for the treatment of tinnitus: a new coil positioning method and first results. Brain Topogr. 18(4), 241–247 (2006). doi:10.1007/s10548-006-0002-1

    Google Scholar 

  14. Medtronic: 8er Spulen—magnetisches und elektrisches Feld. Technical report, Medtronic (2005)

    Google Scholar 

  15. Medtronic: Rundspulen—magnetisches und elektrisches Feld. Technical report, Medtronic (2005)

    Google Scholar 

  16. Mills, K.R., Boniface, S.J., Schubert, M.: Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr. Clin. Neurophysiol. 85, 17–21 (1992)

    Article  Google Scholar 

  17. Mishory, A., Molnar, C., Koola, J., Li, X., Kozel, F.A., Myrick, H., Stroud, Z., Nahas, Z., George, M.S.: The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than convential methods with similar precision. J ECT 20(3), 160–165 (2004)

    Article  Google Scholar 

  18. Niyazov, D.M., Butler, A.J., Kadah, Y.M., Epstein, C.M., Hu, X.P.: Functional magnetic resonance imaging and transcranial magnetic stimulation: effects of motor imagery, movement and coil orientation. Clin. neurophysiol. 116(7), 1601–1610 (2005)

    Article  Google Scholar 

  19. Opitz, A., Windhoff, M., Heidemann, R.M., Turner, R., Thielscher, A.: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. NeuroImage 58(3), 849–859 (2011). doi:10.1016/j.neuroimage.2011.06.069

    Article  Google Scholar 

  20. Pascual-Leone, A., Cohen, L.G., Brasil-Neto, J.P., Hallett, M.: Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr. Clin. Neurophysiol. 93, 42–48 (1994)

    Article  Google Scholar 

  21. Pentland, A.: Maximum likelihood estimation: the best PEST. Percept. Psychophys. 28(4), 377–379 (1980)

    Article  Google Scholar 

  22. Richter, L., Neumann, G., Oung, S., Schweikard, A., Trillenberg, P.: Optimal coil orientation for transcranial magnetic stimulation of the lower limb. PLOS One (in press) (2013). doi:10.1371/journal.pone.0060358

  23. Sakai, K., Ugawa, Y., Terao, Y., Hanajima, R., Furubayashi, T., Kanazawa, I.: Preferential activation of different i waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp. Brain Res. 113, 24–32 (1997)

    Article  Google Scholar 

  24. Sommer, M., Alfaro, A., Rummel, M., Speck, S., Lang, N., Tings, T., Paulus, W.: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clin. Neurophysiol. 117(4), 838–844 (2006). doi:10.1016/j.clinph.2005.10.029

    Google Scholar 

  25. Stokes, M.G., Chambers, C.D., Gould, I.C., English, T., McNaught, E., McDonald, O., Mattingley, J.B.: Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin. Neurophysiol. 118(7), 1617–1625 (2007). doi:10.1016/j.clinph.2007.04.004

    Google Scholar 

  26. Stokes, M.G., Chambers, C.D., Gould, I.C., Henderson, T.R., Janko, N.E., Allen, N.B., Mattingley, J.B.: Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J. Neurophysiol. 94(6), 4520–4527 (2005). doi:10.1152/jn.00067.2005

    Google Scholar 

  27. Terao, Y., Ugawa, Y., Hanajima, R., Machii, K., Furubayashi, T., Mochizuki, H., Enomoto, H., Shiio, Y., Uesugi, H., Iwata, N.K., Kanazawa, I.: Predominant activation of i1-waves from the leg motor area by transcranial magnetic stimulation. Brain Res. 859(1), 137–146 (2000). doi:10.1016/s0006-8993(00)01975-2

    Google Scholar 

  28. Terao, Y., Ugawa, Y., Sakai, K., Uesaka, Y., Kohara, N., Kanazawa, I.: Transcranial stimulation of the leg area of the motor cortex in humans. Acta Neurol. Scand. 89(5), 378–383 (1994). doi:10.1111/j.1600-0404.1994.tb02650.x

    Google Scholar 

  29. Thielscher, A., Kammer, T.: Electric field properties of two commercial figure-8 coils in tms: calculation of focality and efficiency. Clin. Neurophysiol. 115(7), 1697–1708 (2004). doi:10.1016/j.clinph.2004.02.019

  30. Thielscher, A., Opitz, A., Windhoff, M.: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage 54(1), 234–243 (2011). doi:10.1016/j.neuroimage.2010.07.061

  31. Trillenberg, P., Bremer, S., Oung, S., Erdmann, C., Schweikard, A., Richter, L.: Variation of stimulation intensity in transcranial magnetic stimulation with depth. J. Neurosci. Methods 211(2), 185–190 (2012). doi:10.1016/j.jneumeth.2012.09.007

    Article  Google Scholar 

  32. Trillenberg, P., Neumann, G., Oung, S., Schweikard, A., Richter, L.: Threshold for transcranial magnetic stimulation of the foot: precise control of coil orientation with a robotized system. In: Ringelstein, B. (ed.) 55. Jahrestagung der Deutschen Gesellschaft fr Klinische Neurophysiologie und Funktionelle Bildgebung, Klinische Neurophysiologie, vol. 42, p. P280. DGKN, Muenster (2011). doi:10.1055/s-0031-1272727

  33. Werhahn, K.J., Fong, J.K.Y., Meyer, B.U., Priori, A., Rothwell, J.C., Day, B.L., Thompson, P.D.: The effect of magnetic coil orientation on the latency of surface emg and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr. clin. Neurophysiol. 93, 138–146 (1994)

    Article  Google Scholar 

  34. Zarkowski, P., Shin, C.J., Dang, T., Russo, J., Avery, D.: Eeg and the variance of motor evoked potential amplitude. Clin. EEG Neurosci. 3, 247–251 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Richter .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richter, L. (2013). Evaluation of Robotized TMS: The Current System in Practice. In: Robotized Transcranial Magnetic Stimulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7360-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7360-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7359-6

  • Online ISBN: 978-1-4614-7360-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics