Skip to main content

The Importance of Robotized TMS: Stability of Induced Electric Fields

  • Chapter
  • First Online:
  • 918 Accesses

Abstract

From an engineering point of view, robotic Transcranial Magnetic Stimulation (TMS) outperforms hand-held TMS in terms of accuracy, reproducibility and repeatability. However, from a clinical/neuroscience point of view, stability and comparability of the stimulation outcomes are more important. Due to the neuronal effects and the dimensions of the magnetic field produced by the TMS coil, we cannot conclude that improved coil positioning is directly linked to better stimulation outcomes.

Parts of this section have been already presented in [16, 17].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout this work the following notation applies: Vectors are denoted with an arrow, such as \(\vec{A }\). Uppercase letters, e.g. \(M\), refer to matrices. Coordinate systems are expressed in bold uppercase letters, such as \(\mathbf C \). Transformation matrices from a coordinate system \(\mathbf C \) to another coordinate system \(\mathbf D \) are described by \({^{\mathbf{C }}\mathfrak{T }_\mathbf{D }}\). Scalars and constant values are denoted with italic lowercase letters, e.g. \(m\). An entire symbols can be found in the frontmatter of this Book.

References

  1. Artacho-Pérula, E., Arbizu, J., del Mar Arroyo-Jimenez, M., Marcos, P., Martinez-Marcos, A., Blaizot, X., Insausti, R.: Quantitative estimation of the primary auditory cortex in human brains. Brain Res. 1008(1), 20–28 (2004). doi:10.1016/j.brainres.2004.01.081

    Article  Google Scholar 

  2. Balslev, D., Braet, W., McAllister, C., Miall, R.C.: Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. J. Neurosci. Methods 162(1–2), 309–313 (2007). doi:10.1016/j.jneumeth.2007.01.021

    Article  Google Scholar 

  3. Brasil-Neto, J.P., Cohen, L.G., Panizza, M., Nilsson, J., Roth, B.J., Hallett, M.: Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J. Clin. Neurophysiol. 9(1), 132–136 (1992)

    Article  Google Scholar 

  4. Ernst, F., Richter, L., Matthäus, L., Martens, V., Bruder, R., Schlaefer, A., Schweikard, A.: Non-orthogonal tool/flange and robot/world calibration for realistic tracking scenarios. Int. J. Med. Robot. Comput. Assist. Surg. 8(4), 407–420 (2012). doi:10.1002/rcs.1427

    Article  Google Scholar 

  5. Fürweger, C., Drexler, C., Kufeld, M., Muacevic, A., Wowra, B., Schlaefer, A.: Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int. J. Radiat. Oncol. Biol. Phys. 78(3), 937–945 (2010). doi:10.1016/j.ijrobp.2009.11.030

    Google Scholar 

  6. Knecht, S., Sommer, J., Deppe, M., Steinsträter, O.: Scalp position and efficacy of transcranial magnetic stimulation. Clin. Neurophysiol. 116(8), 1988–1993 (2005). doi:10.1016/j.clinph.2005.04.016

    Article  Google Scholar 

  7. Langguth, B., De Ridder, D., Dornhoffer, J.L., Eichhammer, P., Folmer, R.L., Frank, E., Fregni, F., Gerloff, C., Khedr, E., Kleinjung, T., Landgrebe, M., Lee, S., Lefaucheur, J.P., Londero, A., Marcondes, R., Moller, A.R., Pascual-Leone, A., Plewnia, C., Rossi, S., Sanchez, T., Sand, P., Schlee, W., Steffens, T., Van de Heyning, P., Hajak, G.: Controversy: does repetitive transcranial magnetic stimulation/ transcranial direct current stimulation show efficacy in treating tinnitus patients? Brain Stimul. 1, 192–205 (2008)

    Article  Google Scholar 

  8. Langguth, B., Kleinjung, T., Landgrebe, M., Ridder, D.D., Hajak, G.: rTMS for the treatment of tinnitus: the role of neuronavigation for coil positioning. Clin. Neurophysiol. 40(1), 45–58 (2010). doi:10.1016/j.neucli.2009.03.001

    Article  Google Scholar 

  9. Londero, A., Langguth, B., Ridder, D.D., Bonfils, P., Lefaucheur, J.P.: Repetitive transcranial magnetic stimulation (rtms): a new therapeutic approach in subjective tinnitus? Clin. Neurophysiol. 36(3), 145–155 (2006). doi:10.1016/j.neucli.2006.08.001

    Article  Google Scholar 

  10. Mills, K.R., Boniface, S.J., Schubert, M.: Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr. Clin. Neurophysiol. 85, 17–21 (1992)

    Article  Google Scholar 

  11. Murphy, M.J., Chang, S.D., Gibbs, I.C., Le, Q.T., Hai, J., Kim, D., Martin, D.P., Adler, J.R., Jr.: Patterns of patient movement during frameless image-guided radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 55(5), 1400–1408 (2003). doi:10.1016/s0360-3016(02)04597-2

    Google Scholar 

  12. Pascual-Leone, A., Cohen, L.G., Brasil-Neto, J.P., Hallett, M.: Non-invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroencephalogr. Clin. Neurophysiol. 93, 42–48 (1994)

    Article  Google Scholar 

  13. Plewnia, C., Reimold, M., Najib, A., Brehm, B., Reischl, G., Plontke, S.K., Gerloff, C.: Dose-dependent attenuation of auditory phantom perception (Tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Human Brain Mapp. 28, 238–246 (2007). doi:10.1002/hbm.20270

    Article  Google Scholar 

  14. Plewnia, C., Reimold, M., Najib, A., Reischl, G., Plontke, S.K., Gerloff, C.: Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study. J. Neurol. Neurosurg. Psychiatry 78, 152–156 (2007). doi:10.1136/jnnp.2006.095612

    Article  Google Scholar 

  15. Richter, L., Matthäus, L., Schlaefer, A., Schweikard, A.: Fast robotic compensation of spontaneous head motion during transcranial magnetic stimulation (TMS). In: UKACC International Conference on CONTROL 2010, pp. 872–877. United Kingdom Automatic Control Council (2010)

    Google Scholar 

  16. Richter, L., Trillenberg, P., Schweikard, A., Schlaefer, A.: Comparison of stimulus intensity in hand held and robotized motion compensatedtranscranial magnetic stimulation. Clin. Neurophysiol. 42(1–2), 61–62 (2012). doi:10.1016/j.neucli.2011.11.028. Abstracts of the 2012 Burgundy Meeting

    Google Scholar 

  17. Richter, L., Trillenberg, P., Schweikard, A., Schlaefer, A.: Stimulus intensity for hand held and robotic transcranial magnetic stimulation. Brain Stimul. Epub (2012). doi:10.1016/j.brs.2012.06.002

  18. Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A.: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120(12), 2008–2039 (2009). doi:10.1016/j.clinph.2009.08.016

    Article  Google Scholar 

  19. Ruohonen, J.: Transcranial magnetic stimulation: modelling and new techniques. Dissertation, Helsinki University of Technology, Laboratory of Biomedical Engineering (BioMag) (1998)

    Google Scholar 

  20. Ruohonen, J., Ilmoniemi, R.J.: Modeling of the stimulating field generation in tms. Electroencephalogr. Clin. Neurophysiol. Suppl. 51, 30–40 (1999)

    Google Scholar 

  21. Salinas, F.S., Lancaster, J.L., Fox, P.T.: Detailed 3d models of the induced electric field of transcranial magnetic stimulation coils. Phys. Med. Biol. 52(10), 2879–2892 (2007). doi:10.1088/0031-9155/52/10/016

    Article  Google Scholar 

  22. Stokes, M.G., Chambers, C.D., Gould, I.C., English, T., McNaught, E., McDonald, O., Mattingley, J.B.: Distance-adjusted motor threshold for transcranial magnetic stimulation. Clin. Neurophysiol. 118(7), 1617–1625 (2007). doi:10.1016/j.clinph.2007.04.004

    Google Scholar 

  23. Werhahn, K.J., Fong, J.K.Y., Meyer, B.U., Priori, A., Rothwell, J.C., Day, B.L., Thompson, P.D.: The effect of magnetic coil orientation on the latency of surface emg and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr. clin. Neurophysiol. 93, 138–146 (1994)

    Article  Google Scholar 

  24. Zarkowski, P., Shin, C.J., Dang, T., Russo, J., Avery, D.: Eeg and the variance of motor evoked potential amplitude. Clin. EEG Neurosci. 3, 247–251 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Richter .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richter, L. (2013). The Importance of Robotized TMS: Stability of Induced Electric Fields. In: Robotized Transcranial Magnetic Stimulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7360-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7360-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7359-6

  • Online ISBN: 978-1-4614-7360-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics