Advertisement

Closing Remarks

Chapter

Abstract

We have shown that head motion occurs during Transcranial Magnetic Stimulation (TMS) applications and cannot be suppressed completely. Even small changes in the position and/or orientation of the coil with respect to the target can have a substantial impact on the stimulus intensity and therefore on the stimulation outcome. Robotized TMS with active motion compensation, however, effectively offsets these changes, thus maintaining the initial magnitude and orientation throughout treatment. Therefore, robotized TMS outperforms hand-held (neuro-navigated) TMS in terms of accuracy, reproducibility and repeatability.

Keywords

Transcranial Magnetic Stimulation Magnetic Resonance Image Scanner Motor Evoke Potential Blood Oxygenation Level Dependent Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Advanced Neuro Technology B.V.: The lates addition to SmartMove: TouchSense. Website (2012). http://ant-neuro.com/showcases_and_projects/touchsense/; visited on 23 May 2012
  2. 2.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19(2–3), 127–153 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baudewig, J., Bestmann, S.: Transkranielle Magnetstimulation und funktionelle Magnetresonanztomografie, Das TMS-Buch, pp. 367–375. Springer, Berlin (2007). doi: 10.1007/978-3-540-71905-2_37
  4. 4.
    Bäumer, T., Münchau, A.: Zerebrale konnektivität. In: Siebner, H.R., Ziemann, U. (eds.) Das TMS-Buch, pp. 191–201. Springer, Berlin (2007). doi: 10.1007/978-3-540-71905-2_18
  5. 5.
    Bohning, D.E., Denslow, S., Bohning, P.A., Lomarev, M.P., George, M.S.: Interleaving fMRI and rTMS. Suppl. Clin. Neurophysiol. 56, 42–54 (2003)CrossRefGoogle Scholar
  6. 6.
    Bohning, D.E., Denslow, S., Bohning, P.A., Walker, J.A., George, M.S.: A tms coil positioning/holding system for mr image-guided tms interleaved with fmri. Clin. Neurophysiol. 114(11), 2210–2219 (2003). doi: 10.1016/s1388-2457(03)00232-3 Google Scholar
  7. 7.
    Crum, W.R., Hartkens, T., Hill, D.L.G.: Non-rigid image registration: theory and practice. Br. J. Radiol. 77(suppl 2), S140–S153 (2004). doi: 10.1259/bjr/25329214 Google Scholar
  8. 8.
    Gerschlager, W., Siebner, H.R., Rothwell, J.C.: Decreased corticospinal excitability after subthreshold 1 hz rtms over lateral premotor cortex. Neurology 57(3), 449–455 (2001)CrossRefGoogle Scholar
  9. 9.
    Huettel, S.A., Song, A.W., Mccarthy, G.: Functional Magnetic Resonance Imaging. Sinauer Associates, Sunderland (2004)Google Scholar
  10. 10.
    Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pp. 559–568. ACM, New York (2011). doi: 10.1145/2047196.2047270
  11. 11.
    Kantelhardt, S., Fadini, T., Finke, M., Kallenberg, K., Siemerkus, J., Bockermann, V., Matthäus, L., Paulus, W., Schweikard, A., Rohde, V., Giese, A.: Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study. Acta Neurochir. 152(2), 333–343 (2010). doi: 10.1007/s00701-009-0565-1 Google Scholar
  12. 12.
    Langguth, B., De Ridder, D., Dornhoffer, J.L., Eichhammer, P., Folmer, R.L., Frank, E., Fregni, F., Gerloff, C., Khedr, E., Kleinjung, T., Landgrebe, M., Lee, S., Lefaucheur, J.P., Londero, A., Marcondes, R., Moller, A.R., Pascual-Leone, A., Plewnia, C., Rossi, S., Sanchez, T., Sand, P., Schlee, W., Steffens, T., Van de Heyning, P., Hajak, G.: Controversy: does repetitive transcranial magnetic stimulation/ transcranial direct current stimulation show efficacy in treating tinnitus patients? Brain Stimul. 1, 192–205 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, X., Teneb, C.C., Nahas, Z., Kozel, F.A., Large, C., Cohn, J.F., Bohning, D.E., George, M.S.: Interleaved transcranial magnetic stimulation//functional mri confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29(7), 1395–1407 (2004). doi: 10.1038/sj.npp.1300452 Google Scholar
  14. 14.
    Lockwood, A.H., Salvi, R.J., Burkard, R.F.: Tinnitus. New Engl. J. Med. 347(12), 904–910 (2002). doi: 10.1056/nejmra013395 Google Scholar
  15. 15.
    Matthäus, L., Trillenberg, P., Fadini, T., Finke, M., Schweikard, A.: Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and kendall’s tau. Stat. Med. 27(25), 5252–5270 (2008). doi: 10.1002/sim.3353
  16. 16.
    Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: Mixed and Augmented Reality (ISMAR), 2011, 10th IEEE International Symposium on, pp. 127–136. IEEE (2011). doi: 10.1109/ismar.2011.6092378
  17. 17.
    Plewnia, C., Gerloff, C.: Tinnitus. In: Siebner, H.R., Ziemann, U. (eds.) Das TMS-Buch, pp. 593–597. Springer, Berlin (2007). doi: 10.1007/978-3-540-71905-2_59
  18. 18.
    Richter, L., Matthäus, L., Trillenberg, P., Diekmann, C., Rasche, D., Schweikard, A.: Behandlung von chronischem Tinnitus mit roboterunterstützter TMS. In: 39. Jahrestagung der Gesellschaft für Informatik, Lecture Notes in Informatics (LNI), vol. 154, pp. 86, 1018–1027. GI (2009)Google Scholar
  19. 19.
    Viola, P., Jones, M.: Robust real-time face detection. Int.l J. Comput. Vis. 57, 137–154 (2004)CrossRefGoogle Scholar
  20. 20.
    Vukadinovic, D., Pantic, M.: Fully automatic facial feature point detection using Gabor feature based boosted classifiers. In: IEEE International Conference on Systems, Man and Cybernetics 2005, pp. 1692–1698 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany

Personalised recommendations