Skin Cancer pp 529-545 | Cite as

Gene Expression Profiling in Melanoma

Part of the Current Clinical Pathology book series (CCPATH)


One of the big challenges in cancer research is to identify genomic alterations responsible for genesis and progression of disease. Melanoma is one of the most difficult tumours to treat for its aggressiveness, strong therapeutic resistance and proclivity for late metastasis. Here we describe the new gene high-throughput technologies, microarray and next-generation sequencing (NGS), and their impact in melanoma research. We illustrate their use from the discovery of melanoma biomarkers and therapeutic targets to clinical applications including patients’ classification and stratification.


Primary Melanoma Vasculogenic Mimicry Primary Cutaneous Melanoma Thin Melanoma Superficial Spreading Melanoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Anna Maria Aliperti for her assistance in the editing of the manuscript.



Acral lentiginous melanoma, a melanoma subtype not associated with UV exposure

Cye3 and Cy5

Fluorescent dyes belonging to the cyanine dye family


Giga base pairs, one billion pairs of DNA nucleotide bases


Genome-wide association


Lentigo maligna melanoma, a melanoma subtype associated with chronic sun exposure


Metastatic melanoma


Next-generation sequencing


Normal human epidermal melanocytes


Primary cutaneous melanoma


Radial growth phase melanoma


Superficial spreading melanoma, a melanoma subtype linked to severe sunburns


Tissue microarray


Vertical growth phase melanoma


  1. 1.
    Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N Engl J Med. 2004;351(10):998–1012.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Korn EL, Liu PY, Lee SJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol. 2008;26(4):527–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Herlyn M, Ferrone S, Ronai Z, Finerty J, Pelroy R, Mohla S. Melanoma biology and progression. Cancer Res. 2001;61(11):4642–3.PubMedGoogle Scholar
  5. 5.
    Van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.CrossRefGoogle Scholar
  6. 6.
    Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.PubMedCrossRefGoogle Scholar
  7. 7.
    West M, Ginsburg GS, Huang AT, Nevins JR. Embracing the complexity of genomic data for personalized medicine. Genome Res. 2006;16(5):559–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996;6(7):639–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Gunderson KL, Kruglyak S, Graige MS, et al. Decoding randomly ordered DNA arrays. Genome Res. 2004;14(5):870–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Sanges R, Cordero F, Calogero RA. oneChannelGUI: a graphical interface to Bioconductor tools, designed for life scientists who are not familiar with R language. Bioinformatics. 2007;23(24):3406–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.PubMedCrossRefGoogle Scholar
  13. 13.
    von Heydebreck A, Huber W, Gentleman RC. Differential expression of the Bioconductor Project. Bioconductor Project Working Papers. 2004;Working Paper 7.Google Scholar
  14. 14.
    Jeffery IB, Higgins DG, Culhane AC. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics. 2006;7:359.PubMedCrossRefGoogle Scholar
  15. 15.
    Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 2001;11(1):3–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Hash Functions. Dr. Dobb’s Web site. Accessed 4 Sept 1997.
  18. 18.
    Burrows M, Wheeler D. A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation. 1994.Google Scholar
  19. 19.
    Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanger F, Coulson AR, Barrell BG, Smith AJ, Roe BA. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980;143(2):161–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Myers EW. Toward simplifying and accurately formulating fragment assembly. J Comput Biol. 1995;2(2):275–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhi D, Raphael BJ, Price AL, Tang H, Pevzner PA. Identifying repeat domains in large genomes. Genome Biol. 2006;7(1):R7.PubMedCrossRefGoogle Scholar
  23. 23.
    Perlis C, Herlyn M. Recent advances in melanoma biology. Oncologist. 2004;9(2):182–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Miller AJ, Mihm Jr MC. Melanoma. N Engl J Med. 2006;355(1):51–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Clark Jr WH, Elder DE, Guerry DT, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15(12):1147–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Zembowicz A, Scolyer RA. Nevus/melanocytoma/melanoma: an emerging paradigm for classification of melanocytic neoplasms? Arch Pathol Lab Med. 2011;135(3):300–6.PubMedGoogle Scholar
  27. 27.
    Uong A, Zon LI. Melanocytes in development and cancer. J Cell Physiol. 2010;222(1):38–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20(16):2149–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Satyamoorthy K, Li G, Gerrero MR, et al. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res. 2003;63(4):756–9.PubMedGoogle Scholar
  30. 30.
    Willmore-Payne C, Holden JA, Tripp S, Layfield LJ. Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol. 2005;36(5):486–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 2005;65(10):4005–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Gray-Schopfer VC, da Rocha Dias S, Marais R. The role of B-RAF in melanoma. Cancer Metastasis Rev. 2005;24(1):165–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Spittle C, Ward MR, Nathanson KL, et al. Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J Mol Diagn. 2007;9(4):464–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Greulich KM, Utikal J, Peter RU, Krahn G. c-MYC and nodular malignant melanoma. A case report. Cancer. 2000;89(1):97–103.PubMedCrossRefGoogle Scholar
  35. 35.
    Bastian BC, Olshen AB, LeBoit PE, Pinkel D. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol. 2003;163(5):1765–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Cowan JM, Halaban R, Francke U. Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst. 1988;80(14):1159–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Carr KM, Bittner M, Trent JM. Gene-expression profiling in human cutaneous melanoma. Oncogene. 2003;22(20):3076–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Haqq C, Nosrati M, Sudilovsky D, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A. 2005;102(17):6092–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith AP, Hoek K, Becker D. Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther. 2005;4(9):1018–29.PubMedCrossRefGoogle Scholar
  40. 40.
    Jaeger J, Koczan D, Thiesen HJ, et al. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res. 2007;13(3):806–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Riker AI, Enkemann SA, Fodstad O, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics. 2008;1:13.PubMedCrossRefGoogle Scholar
  42. 42.
    Alonso SR, Tracey L, Ortiz P, et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res. 2007;67(7):3450–60.PubMedCrossRefGoogle Scholar
  43. 43.
    John T, Black MA, Toro TT, et al. Predicting clinical outcome through molecular profiling in stage III melanoma. Clin Cancer Res. 2008;14(16):5173–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Karim RZ, Li W, Sanki A, et al. Reduced p16 and increased cyclin D1 and pRb expression are correlated with progression in cutaneous melanocytic tumors. Int J Surg Pathol. 2009;17(5):361–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Mehnert JM, McCarthy MM, Jilaveanu L, et al. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol. 2010;41(3):375–84.PubMedCrossRefGoogle Scholar
  46. 46.
    DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996;14(4):457–60.PubMedCrossRefGoogle Scholar
  47. 47.
    el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Graves DT, Barnhill R, Galanopoulos T, Antoniades HN. Expression of monocyte chemotactic protein-1 in human melanoma in vivo. Am J Pathol. 1992;140(1):9–14.PubMedGoogle Scholar
  49. 49.
    Vijayasaradhi S, Doskoch PM, Wolchok J, Houghton AN. Melanocyte differentiation marker gp75, the brown locus protein, can be regulated independently of tyrosinase and pigmentation. J Invest Dermatol. 1995;105(1):113–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406(6795):536–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Kabbarah O, Nogueira C, Feng B, et al. Integrative genome comparison of primary and metastatic melanomas. PLoS One. 2010;5(5):e10770.PubMedCrossRefGoogle Scholar
  52. 52.
    Morton DL, Wen DR, Wong JH, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Yu LL, Flotte TJ, Tanabe KK, et al. Detection of microscopic melanoma metastases in sentinel lymph nodes. Cancer. 1999;86(4):617–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Messina JL, Glass LF, Cruse CW, Berman C, Ku NK, Reintgen DS. Pathologic examination of the sentinel lymph node in malignant melanoma. Am J Surg Pathol. 1999;23(6):686–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Koh SS, Opel ML, Wei JP, et al. Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod Pathol. 2009;22(4):538–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Seftor EA, Brown KM, Chin L, et al. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res. 2005;65(22):10164–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Hoon DS, Spugnardi M, Kuo C, Huang SK, Morton DL, Taback B. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene. 2004;23(22):4014–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Furuta J, Nobeyama Y, Umebayashi Y, Otsuka F, Kikuchi K, Ushijima T. Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas. Cancer Res. 2006;66(12):6080–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu S, Ren S, Howell P, Fodstad O, Riker AI. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res. 2008;21(5):545–58.PubMedCrossRefGoogle Scholar
  60. 60.
    Rothhammer T, Bosserhoff AK. Epigenetic events in malignant melanoma. Pigment Cell Res. 2007;20(2):92–111.PubMedCrossRefGoogle Scholar
  61. 61.
    Muthusamy V, Duraisamy S, Bradbury CM, et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006;66(23):11187–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Stark MS, Tyagi S, Nancarrow DJ, et al. Characterization of the melanoma miRNAome by deep sequencing. PLoS One. 2010;5(3):e9685.PubMedCrossRefGoogle Scholar
  63. 63.
    Winnepenninckx V, Lazar V, Michiels S, et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006;98(7):472–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Eisen T, Ahmad T, Flaherty KT, et al. Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95(5):581–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 2006;24(29):4738–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Markovic SN, Geyer SM, Dawkins F, et al. A phase II study of bortezomib in the treatment of metastatic malignant melanoma. Cancer. 2005;103(12):2584–9.PubMedCrossRefGoogle Scholar
  67. 67.
    End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 2001;61(1):131–7.PubMedGoogle Scholar
  68. 68.
    O’Donnell A, Faivre S, Burris 3rd HA, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Genetics and Biophysics, I.G.B., A.Buzzati-Traverso, CNRNaplesItaly
  2. 2.Department of Genetics and BiophysicsInstitute of Genetics and BiophysicsNaplesItaly

Personalised recommendations