Skip to main content

Immunological Aspects of Cryosurgery

  • Chapter
  • First Online:
Skin Cancer

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Cryosurgery has been used increasingly to treat different neoplasia including liver, bone, breast, lung, and prostate and of course the variety of benign, premalignant, and malignant skin lesions. Proposed primary advantages of cryosurgery in comparison to surgical excision include minimal morbidity, less damage of surrounding structures, ease of use, and lower cost. Potential secondary advantages include the induction of antitumoral response triggered by natural absorption of malignant tissue, which releases hidden tumoral epitopes after intracellular cryoinjury. Several published studies and anecdotal reports have shown distal disease regression after cryoablation of primary tumor, or disappearance of untreated warts at the different location from the treated lesions in the same individual. Several mechanisms have been proposed to explain the therapeutic effects of cryosurgery, but until very recently the literature has been controversial on the issue. Lately, cryoimmunological responses have been more adequately measured due to a development of more accurate and reproducible, immunological assays. Factors affecting success of cryoablation are especially analyzed, including but not limited to time and amount of freeze, type of the tumor treated, ratio of induced apoptosis vs. necrosis, type of inflammatory infiltrate (macrophages, dendritic cells, neutrophils), and relationship of T-regulatory cells vs. T cytotoxic cells. Eventually the use of immunological adjuvants to optimize the effects of cryoinjury is discussed. It is not surprising that there is tremendous interest in immunological aspects of cryosurgery, since cryoablation has the potential for both local and systemic therapy, i.e., direct ablation of the tumor and eradication of micrometastases through the immune system with minimal systemic toxicity. However, the generation of antitumor immune response is complex, and several factors may contribute not only to a positive response but also tilt it to the opposite direction, including immune suppression. Further directions would possibly include clarification and definition of ideal parameters for optimal destruction of tumor and induction of strong protective immunity with the obliteration of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabel MS, Nehs MA, Su G, Lowler KP, Ferrara JL, Chang AE. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat. 2005;90:97–104.

    Article  PubMed  CAS  Google Scholar 

  2. Miya K, Saji S, Morita T, Niwa H, Takao H, Kida H, et al. Immunological response of regional lymph nodes after tumor cryosurgery: experimental study in rats. Cryobiology. 1986;23:290–5.

    Article  PubMed  CAS  Google Scholar 

  3. Osada S, Imai H, Tomita H, Tokuyama Y, Okumura N, Matsuhashi N, et al. Serum cytokine levels in response to hepatic cryoablation. J Surg Oncol. 2007;95:491–8.

    Article  PubMed  CAS  Google Scholar 

  4. He T, Tang C, Xu S, Moyana T, Xiang J. Nterferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell Mol Immunol. 2007;4:105–11.

    PubMed  CAS  Google Scholar 

  5. Matin SF, Sharma P, Gill IS, Tannenbaum C, Hobart MG, Novick AC, et al. Immunological response to renal cryoablation in an in vivo orthotopic renal cell carcinoma murine model. J Urol. 2010;183:333–8.

    Article  PubMed  Google Scholar 

  6. Gursel E, Roberts M, Veenema RJ. Regression of prostatic cancer following sequential cryotherapy to the prostate. J Urol. 1972;108:928–32.

    PubMed  CAS  Google Scholar 

  7. Ablin RJ, Soanes WA, Gonder MJ. Immuno-cryourogenital treatment of benign and malignant diseases of the prostate. Gerontol Clin. 1970;12:302–13.

    Article  CAS  Google Scholar 

  8. Staren ED, Sabel MS, Gianakakis LM, Wiener GA, Hart VM, Gorski M, et al. Cryosurgery of breast cancer. Arch Surg. 1997;132:28–33; discussion 4.

    Article  PubMed  CAS  Google Scholar 

  9. Wong LL, Limm WM, Cheung AH, Fan FL, Wong LM. Hepatic cryosurgery: early experience in Hawaii. Hawaii Med J. 1995;54:811–3.

    PubMed  CAS  Google Scholar 

  10. Crews KA, Kuhn JA, McCarty TM, Fisher TL, Goldstein RM, Preskitt JT. Cryosurgical ablation of hepatic tumors. Am J Surg. 1997;174:614–7; discussion 7–8.

    Article  PubMed  CAS  Google Scholar 

  11. Wang ZS. Cryosurgery in rectal carcinoma–report of 41 cases. Zhonghua Zhong Liu Za Zhi. 1989;11:226–7.

    PubMed  CAS  Google Scholar 

  12. Blackwood CE, Cooper IS. Response of experimental tumor systems to cryosurgery. Cryobiology. 1972;9:508–15.

    Article  PubMed  CAS  Google Scholar 

  13. Privalov PL. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25:281–305.

    Article  PubMed  CAS  Google Scholar 

  14. Mazur P, Rall WF, Leibo SP. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Influence of the method of calculating the temperature dependence of water permeability. Cell Biophys. 1984;6:197–213.

    PubMed  CAS  Google Scholar 

  15. Baust JG, Gage AA. The molecular basis of cryosurgery. BJU Int. 2005;95:1187–91.

    Article  PubMed  Google Scholar 

  16. Yang G, Zhang A, Xu LX. Intracellular ice formation and growth in MCF-7 cancer cells. Cryobiology. 2011;63:38–45.

    Article  PubMed  Google Scholar 

  17. Tatsutani K, Rubinsky B, Onik G, Dahiya R. Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells. Urology. 1996;48:441–7.

    Article  PubMed  CAS  Google Scholar 

  18. Hanai A, Yang WL, Ravikumar TS. Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: mediation by cytochrome c release. Int J Cancer. 2001;93:526–33.

    Article  PubMed  CAS  Google Scholar 

  19. Weber SM, Lee Jr FT, Chinn DO, Warner T, Chosy SG, Mahvi DM. Perivascular and intralesional tissue necrosis after hepatic cryoablation: results in a porcine model. Surgery. 1997;122:742–7.

    Article  PubMed  CAS  Google Scholar 

  20. Glasgow SC, Ramachandran S, Csontos KA, Jia J, Mohanakumar T, Chapman WC. Interleukin-1beta is prominent in the early pulmonary inflammatory response after hepatic injury. Surgery. 2005;138:64–70.

    Article  PubMed  Google Scholar 

  21. Seifert JK, Junginger T. Cryotherapy for liver tumors: current status, perspectives, clinical results, and review of literature. Technol Cancer Res Treat. 2004;3:151–63.

    PubMed  CAS  Google Scholar 

  22. Bishoff JT, Chen RB, Lee BR, Chan DY, Huso D, Rodriguez R, et al. Laparoscopic renal cryoablation: acute and long-term clinical, radiographic, and pathologic effects in an animal model and application in a clinical trial. J Endourol. 1999;13:233–9.

    Article  PubMed  CAS  Google Scholar 

  23. Chosy SG, Nakada SY, Lee Jr FT, Warner TF. Monitoring renal cryosurgery: predictors of tissue necrosis in swine. J Urol. 1998;159:1370–4.

    Article  PubMed  CAS  Google Scholar 

  24. Campbell SC, Krishnamurthi V, Chow G, Hale J, Myles J, Novick AC. Renal cryosurgery: experimental evaluation of treatment parameters. Urology. 1998;52:29–33; discussion 33−4.

    Article  PubMed  CAS  Google Scholar 

  25. Todryk S, Melcher AA, Hardwick N, Linardakis E, Bateman A, Colombo MP, et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol. 1999;163:1398–408.

    PubMed  CAS  Google Scholar 

  26. Gazzaniga S, Bravo A, Goldszmid SR, Maschi F, Martinelli J, Mordoh J, et al. Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J Invest Dermatol. 2001;116:664–71.

    Article  PubMed  CAS  Google Scholar 

  27. Ismail M, Morgan R, Harrington K, Davies J, Pandha H. Immunoregulatory effects of freeze injured whole tumour cells on human dendritic cells using an in vitro cryotherapy model. Cryobiology. 2010;61:268–74.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou L, Fu JL, Lu YY, Fu BY, Wang CP, An LJ, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus- related hepatocellular carcinoma. J Gastroenterol. 2010;45:968–78.

    Article  PubMed  CAS  Google Scholar 

  29. Baecher-Allan C, Anderson DE. Regulatory cells and human cancer. Semin Cancer Biol. 2006;16:98–105.

    Article  PubMed  CAS  Google Scholar 

  30. Rayman P, Wesa AK, Richmond AL, Das T, Biswas K, Raval G, et al. Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res. 2004;10:6360S–6.

    Article  PubMed  CAS  Google Scholar 

  31. Sabel MS, Su G, Griffith KA, Chang AE. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol. 2010;17:1187–93.

    Article  PubMed  Google Scholar 

  32. Shulman S, Brandt EJ, Yantorno C. Studies in cryo-immunology. II. Tissue and species specificity of the autoantibody response and comparison with iso- immunization. Immunology. 1968;14:149–58.

    PubMed  CAS  Google Scholar 

  33. Hoffmann NE, Coad JE, Huot CS, Swanlund DJ, Bischof JC. Investigation of the mechanism and the effect of cryoimmunology in the Copenhagen rat. Cryobiology. 2001;42:59–68.

    Article  PubMed  CAS  Google Scholar 

  34. Bahn DK, Lee F, Badalament R, Kumar A, Greski J, Chernick M. Targeted cryoablation of the prostate: 7-year outcomes in the primary treatment of prostate cancer. Urology. 2002;60:3–11.

    Article  PubMed  Google Scholar 

  35. Si TG, Guo Z, Wang HT, Han YP, Hao XS. Cryoablation for prostate cancer induces tumor-specific immune response. Zhonghua Nan Ke Xue. 2009;15:350–3.

    PubMed  CAS  Google Scholar 

  36. Petersen DS, Milleman LA, Rose EF, Bonney WW, Schmidt JD, Hawtrey CE, et al. Biopsy and clinical course after cryosurgery for prostatic cancer. J Urol. 1978;120:308–11.

    PubMed  CAS  Google Scholar 

  37. Waitz R, Solomon SB, Petre EN, Trumble AE, Fasso M, Norton L, et al. Potent induction of tumor immunity by combining tumor cryoablation with anti- CTLA-4 therapy. Cancer Res. 2012;72:430–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kogel HGR, Fohlmeister I, Pichlmaier H. Cryotherapy of rectal cancer. Immunologic results. Zentralbl Chir. 1985;110:147–54.

    PubMed  CAS  Google Scholar 

  39. Ravindranath MH, Wood TF, Soh D, Gonzales A, Muthugounder S, Perez C, et al. Cryosurgical ablation of liver tumors in colon cancer patients increases the serum total ganglioside level and then selectively augments antiganglioside IgM. Cryobiology. 2002;45:10–21.

    Article  PubMed  CAS  Google Scholar 

  40. Sabel MS, Arora A, Su G, Chang AE. Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor. Cryobiology. 2006;53:360–6.

    Article  PubMed  CAS  Google Scholar 

  41. Misao A, Sakata K, Saji S, Kunieda T. Late appearance of resistance to tumor rechallenge following cryosurgery. A study in an experimental mammary tumor of the rat. Cryobiology. 1981;18:386–9.

    Article  PubMed  CAS  Google Scholar 

  42. Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology. 2009;58:1–11.

    Article  PubMed  CAS  Google Scholar 

  43. Urano M, Tanaka C, Sugiyama Y, Miya K, Saji S. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharide on multiple liver metastases in a murine model. Cryobiology. 2003;46:238–45.

    Article  PubMed  CAS  Google Scholar 

  44. Goel R, Anderson K, Slaton J, Schmidlin F, Vercellotti G, Belcher J, et al. Adjuvant approaches to enhance cryosurgery. J Biomech Eng. 2009;131:074003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar L. Krunic MD, PhD, FAAD, FACMS .

Editor information

Editors and Affiliations

Glossary

APCs

Antigen-presenting cells

Cryoimmunology

process that involves a specific immune response formed against antigens and debris derived from cells and tissues destroyed by cryosurgery.

DCs

Dendritic cells

MHC

Major histocompatibility complex

RCC

Renal cell carcinoma

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moioli, E.K., Krunic, A.L. (2014). Immunological Aspects of Cryosurgery. In: Baldi, A., Pasquali, P., Spugnini, E. (eds) Skin Cancer. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7357-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7357-2_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7356-5

  • Online ISBN: 978-1-4614-7357-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics