Skip to main content
Book cover

Skin Cancer pp 257–266Cite as

Optical Coherence Tomography

  • Chapter
  • First Online:

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic tissue after therapy. The OCT images provide an advantageous combination of resolution and penetration depth, but specific studies of diagnostic sensitivity and specificity in dermatology are sparse. In order to improve OCT image quality and expand the potential of OCT, technical developments are necessary. It is suggested that the technology will be of particular interest to the routine follow-up of patients undergoing non-invasive therapy of malignant or premalignant keratinocyte tumours. It is speculated that the continued technological development can propel the method to a greater level of dermatological use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marschall S, Sander B, Mogensen M, Jorgensen TM, Andersen PE. Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal Bioanal Chem. 2011;400(9):2699–720.

    Article  PubMed  CAS  Google Scholar 

  2. Mogensen M, Thrane L, Jorgensen TM, Andersen PE, Jemec GB. OCT imaging of skin cancer and other dermatological diseases. J Biophotonics. 2009;2(6–7):442–51.

    Article  PubMed  Google Scholar 

  3. Steiner R, Kunzi-Rapp K, Scharffetter-Kochanek K. Optical coherence tomography: clinical applications in dermatology. Med Laser Appl. 2003;18(3):249–59.

    Article  Google Scholar 

  4. Mogensen M, Morsy HA, Nurnberg BM, Jemec GB. Optical coherence tomography imaging of bullous diseases. J Eur Acad Dermatol Venereol. 2008;22(12):1458–64.

    Article  PubMed  CAS  Google Scholar 

  5. Mogensen M, Thomsen JB, Skovgaard LT, Jemec GB. Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography. Br J Dermatol. 2007;157(5):894–900.

    Article  PubMed  CAS  Google Scholar 

  6. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  CAS  Google Scholar 

  7. Mogensen M, Nurnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GB. In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol. 2009;160(5):1026–33.

    Article  PubMed  CAS  Google Scholar 

  8. Hamdoon Z, Jerjes W, Upile T, Hopper C. Optical coherence tomography-guided photodynamic therapy for skin cancer: case study. Photodiagnosis Photodyn Ther. 2011;8(1):49–52.

    Article  PubMed  Google Scholar 

  9. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–8.

    Article  PubMed  CAS  Google Scholar 

  10. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117(1–2):43–8.

    Article  CAS  Google Scholar 

  11. Bail MA, Häusler G, Herrmann JM, Lindner MW, Ringler R. Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry. Proc SPIE. 1996;2925:298–303.

    Article  Google Scholar 

  12. Häusler G, Lindner MW. ‘Coherence radar’ and ‘spectral radar’ – new tools for dermatological diagnosis. J Biomed Opt. 1998;3(1):21–31.

    Article  Google Scholar 

  13. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.

    Article  PubMed  CAS  Google Scholar 

  14. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt Lett. 1997;22(22):1704–6.

    Article  PubMed  CAS  Google Scholar 

  15. Haberland U, Rütten W, Blazek V, Schmitt HJ. Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser. Proc SPIE. 1995;2389:503–12.

    Article  Google Scholar 

  16. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt. 2004;9(1):47–74.

    Article  PubMed  Google Scholar 

  17. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett. 2001;26(9):608–10.

    Article  PubMed  CAS  Google Scholar 

  18. Považay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, et al. Submicrometer axial resolution optical coherence tomography. Opt Lett. 2002;27(20):1800–2.

    Article  PubMed  Google Scholar 

  19. Inoué S. Foundations of confocal scanned imaging in light microscopy. In: Pawley JB, editor. Handbook of biological confocal microscopy. 3 ed. Springer: New York; 2006.

    Google Scholar 

  20. Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. Optical coherence microscopy in scattering media. Opt Lett. 1994;19(8):590–2.

    Article  PubMed  CAS  Google Scholar 

  21. Bouma BE, Yun S-H, Vakoc BJ, Suter MJ, Tearney GJ. Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr Opin Biotechnol. 2009;20(1):111–8.

    Article  PubMed  CAS  Google Scholar 

  22. Parrish JA. New concepts in therapeutic photomedicine; photochemistry, optical targeting and the therapeutic window. J Invest Dermatol. 1981;77(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  23. Gambichler T, Matip R, Moussa G, Altmeyer P, Hoffmann K. In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site. J Dermatol Sci. 2006;44(3):145–52.

    Article  PubMed  Google Scholar 

  24. Mogensen M, Morsy HA, Thrane L, Jemec GB. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology. 2008;217(1):14–20.

    Article  PubMed  Google Scholar 

  25. Welzel J, Lankenau E, Birngruber R, Engelhardt R. Optical coherence tomography of the human skin. J Am Acad Dermatol. 1997;37(6):958–63.

    Article  PubMed  CAS  Google Scholar 

  26. Welzel J, Reinhardt C, Lankenau E, Winter C, Wolff HH. Changes in function and morphology of normal human skin: evaluation using optical coherence tomography. Br J Dermatol. 2004;150(2):220–5.

    Article  PubMed  CAS  Google Scholar 

  27. Querleux B, Baldeweck T, Diridollou S, de Rigal J, Huguet E, Leroy F, et al. Skin from various ethnic origins and aging: an in vivo cross-sectional multimodality imaging study. Skin Res Technol. 2009;15(3):306–13.

    Article  PubMed  Google Scholar 

  28. Abuzahra F, Baron JM. Optical coherence tomography of the skin: a diagnostic light look. Hautarzt. 2006;57(7):646–7.

    Article  PubMed  Google Scholar 

  29. Barton JK, Gossage KW, Xu W, Ranger-Moore JR, Saboda K, Brooks CA, et al. Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study. Technol Cancer Res Treat. 2003;2(6):525–35.

    PubMed  CAS  Google Scholar 

  30. Bechara FG, Gambichler T, Stucker M, Orlikov A, Rotterdam S, Altmeyer P, et al. Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol. 2004;10(3):169–73.

    Article  PubMed  CAS  Google Scholar 

  31. Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, et al. In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol. 2000;6(1):6–16.

    Article  PubMed  Google Scholar 

  32. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol. 2006;55(3):408–12.

    Article  PubMed  Google Scholar 

  33. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatol Surg. 2007;33(4):421–5; discussion 5–6.

    Article  PubMed  CAS  Google Scholar 

  34. Welzel J. Optical coherence tomography. Hautarzt. 2010;61(5):416–20.

    Article  PubMed  CAS  Google Scholar 

  35. Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol. 2001;7(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  36. Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF. Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol. 2004;123(3):458–63.

    Article  PubMed  CAS  Google Scholar 

  37. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stucker M, et al. In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci. 2007;45(3):167–73.

    Article  PubMed  Google Scholar 

  38. Ulrich M, Stockfleth E, Roewert-Huber J, Astner S. Noninvasive diagnostic tools for nonmelanoma skin cancer. Br J Dermatol. 2007;157 Suppl 2:56–8.

    Article  PubMed  Google Scholar 

  39. Strasswimmer J, Pierce M, Park B, et al. Characterization of basal cell carcinoma by multifunctional optical coherence tomography. J Invest Dermatol. 2003;121:156.

    Article  Google Scholar 

  40. Jensen L, Thrane L, Andersen P, et al. Optical coherence tomography in clinical examination of non-pigmented skin malignancies. Proc SPIE-OSA Biomed Opt SPIE. 2003;5140:160–7.

    Google Scholar 

  41. Andretzky P, Lindner M, Herrmann J, et al. Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin. Proc SPIE. 1998;3567:78–87.

    Article  Google Scholar 

  42. Jerjes W, Upile T, Conn B, Hamdoon Z, Betz CS, McKenzie G, et al. In vitro examination of suspicious oral lesions using optical coherence tomography. Br J Oral Maxillofac Surg. 2010;48(1):18–25.

    Article  PubMed  Google Scholar 

  43. Wilder-Smith P, Jung WG, Brenner M, Osann K, Beydoun H, Messadi D, et al. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35(4):269–75.

    Article  PubMed  Google Scholar 

  44. Forsea AM, Carstea EM, Ghervase L, Giurcaneanu C, Pavelescu G. Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study. J Med Life. 2010;3(4):381–9.

    PubMed  Google Scholar 

  45. Khandwala M, Penmetsa BR, Dey S, Schofield JB, Jones CA, Podoleanu A. Imaging of periocular basal cell carcinoma using en face optical coherence tomography: a pilot study. Br J Ophthalmol. 2010;94(10):1332–6.

    Article  PubMed  CAS  Google Scholar 

  46. Mogensen M, Joergensen TM, Nurnberg BM, Morsy HA, Thomsen JB, Thrane L, et al. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35(6):965–72.

    Article  PubMed  CAS  Google Scholar 

  47. Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K, et al. Using optical coherence tomography to evaluate skin sun damage and precancer. Lasers Surg Med. 2007;39(9):687–95.

    Article  PubMed  Google Scholar 

  48. Cunha D, Richardson T, Sheth N, Orchard G, Coleman A, Mallipeddi R. Comparison of ex vivo optical coherence tomography with conventional frozen-section histology for visualizing basal cell carcinoma during Mohs micrographic surgery. Br J Dermatol. 2011;165(3):576–80.

    Article  PubMed  CAS  Google Scholar 

  49. Mogensen M, Nurnberg BM, Thrane L, Jorgensen TM, Andersen PE, Jemec GB. How histological features of basal cell carcinomas influence image quality in optical coherence tomography. J Biophotonics. 2011;4(7–8):544–51.

    Article  PubMed  Google Scholar 

  50. Say EA, Shah SU, Ferenczy S, Shields CL. Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol. 2011;2011:385058.

    PubMed  Google Scholar 

  51. Bianciotto C, Shields CL, Guzman JM, Romanelli-Gobbi M, Mazzuca Jr D, Green WR, et al. Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases. Ophthalmology. 2011;118(7):1297–302.

    PubMed  Google Scholar 

  52. de Giorgi V, Stante M, Massi D, Mavilia L, Cappugi P, Carli P. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol. 2005;14(1):56–9.

    Article  PubMed  Google Scholar 

  53. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, et al. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol. 2007;57(4):629–37.

    Article  PubMed  Google Scholar 

  54. Smith L, Macneil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res Technol. 2011;17:257–69.

    Article  Google Scholar 

  55. Petrova G, Derpalyek E, Gladkova N, et al. Optical coherence tomography using tissue clearing for skin disease diagnosis. Proc SPIE. 2003;5140:168–86.

    Article  Google Scholar 

  56. Buchwald HJ, Muller A, Kampmeier J, Lang GK. Optical coherence tomography versus ultrasound biomicroscopy of conjunctival and eyelid lesions. Klin Monbl Augenheilkd. 2003;220(12):822–9.

    Article  PubMed  Google Scholar 

  57. Wennberg AM. Basal cell carcinoma–new aspects of diagnosis and treatment. Acta Derm Venereol Suppl (Stockh). 2000;209:5–25.

    CAS  Google Scholar 

  58. Zhang EZ, Povazay B, Laufer J, Alex A, Hofer B, Pedley B, et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed Opt Express. 2011;2(8):2202–15.

    Article  PubMed  Google Scholar 

  59. Mogensen M, Jorgensen TM, Thrane L, Nurnberg BM, Jemec GB. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction. Exp Dermatol. 2010;19(8):e293–5.

    Article  PubMed  Google Scholar 

  60. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt. 2004;9(2):292–8.

    Article  PubMed  Google Scholar 

  61. Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med. 2011;43(2):143–51.

    Article  PubMed  Google Scholar 

  62. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K. Applications of optical coherence tomography in dermatology. J Dermatol Sci. 2005;40(2):85–94.

    Article  PubMed  Google Scholar 

  63. Patel JK, Konda S, Perez OA, Amini S, Elgart G, Berman B. Newer technologies/techniques and tools in the diagnosis of melanoma. Eur J Dermatol. 2008;18(6):617–31.

    PubMed  Google Scholar 

  64. Jorgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GB. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol. 2008;14(3):364–9.

    Article  PubMed  Google Scholar 

  65. Pomerantz R, Zell D, McKenzied G, Siegel DM. Optical coherence tomography used as a modality to delineate basal cell carcinoma prior to Mohs micrographic surgery. Case Rep Dermatol. 2011;3:212–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Mogensen MD, PhD .

Editor information

Editors and Affiliations

Glossary

TD-OCT

Time domain OCT

FD-OTC

Frequency domain OCT

LCI

Low-coherence interferometry

OCT

Optical coherence tomography. It is an interferometric technique that detects reflected or backscattered light from tissue

OCM

Optical coherence microscopy

Michelson interferometer

The principle of OCT is white light or low coherence interferometry. The optical setup typically consists of an interferometer, typically a Michelson type, with a low coherence, broad bandwidth light source

SD-OCT

Spectral domain-OCT

SS-OCT

Swept source-OCT

Axial resolution

The axial and lateral resolutions of OCT are decoupled from one another; the former being an equivalent to the coherence length of the light source

Transverse resolution

is defined as a function of the optics, as opposed to axial resolution that matches the coherence length of the light source

InGaAs-based cameras

Deep-cooled camera systems that employ indium gallium arsenide. These are cameras with focal plane arrays (FPAs) that can both amplify and broaden the utility of near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mogensen, M., Themstrup, L., Banzhaf, C., Marschall, S., Andersen, P.E., Jemec, G.B.E. (2014). Optical Coherence Tomography. In: Baldi, A., Pasquali, P., Spugnini, E. (eds) Skin Cancer. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7357-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7357-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7356-5

  • Online ISBN: 978-1-4614-7357-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics