Skin Cancer pp 257-266 | Cite as

Optical Coherence Tomography

  • Mette Mogensen
  • Lotte Themstrup
  • Christina Banzhaf
  • Sebastian Marschall
  • Peter E. Andersen
  • Gregor B. E. Jemec
Part of the Current Clinical Pathology book series (CCPATH)


Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic tissue after therapy. The OCT images provide an advantageous combination of resolution and penetration depth, but specific studies of diagnostic sensitivity and specificity in dermatology are sparse. In order to improve OCT image quality and expand the potential of OCT, technical developments are necessary. It is suggested that the technology will be of particular interest to the routine follow-up of patients undergoing non-invasive therapy of malignant or premalignant keratinocyte tumours. It is speculated that the continued technological development can propel the method to a greater level of dermatological use.


Retina Coherence Fluorouracil Imiquimod Keratosis 




Time domain OCT


Frequency domain OCT


Low-coherence interferometry


Optical coherence tomography. It is an interferometric technique that detects reflected or backscattered light from tissue


Optical coherence microscopy

Michelson interferometer

The principle of OCT is white light or low coherence interferometry. The optical setup typically consists of an interferometer, typically a Michelson type, with a low coherence, broad bandwidth light source


Spectral domain-OCT


Swept source-OCT

Axial resolution

The axial and lateral resolutions of OCT are decoupled from one another; the former being an equivalent to the coherence length of the light source

Transverse resolution

is defined as a function of the optics, as opposed to axial resolution that matches the coherence length of the light source

InGaAs-based cameras

Deep-cooled camera systems that employ indium gallium arsenide. These are cameras with focal plane arrays (FPAs) that can both amplify and broaden the utility of near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum


  1. 1.
    Marschall S, Sander B, Mogensen M, Jorgensen TM, Andersen PE. Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal Bioanal Chem. 2011;400(9):2699–720.PubMedCrossRefGoogle Scholar
  2. 2.
    Mogensen M, Thrane L, Jorgensen TM, Andersen PE, Jemec GB. OCT imaging of skin cancer and other dermatological diseases. J Biophotonics. 2009;2(6–7):442–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Steiner R, Kunzi-Rapp K, Scharffetter-Kochanek K. Optical coherence tomography: clinical applications in dermatology. Med Laser Appl. 2003;18(3):249–59.CrossRefGoogle Scholar
  4. 4.
    Mogensen M, Morsy HA, Nurnberg BM, Jemec GB. Optical coherence tomography imaging of bullous diseases. J Eur Acad Dermatol Venereol. 2008;22(12):1458–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Mogensen M, Thomsen JB, Skovgaard LT, Jemec GB. Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography. Br J Dermatol. 2007;157(5):894–900.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Mogensen M, Nurnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GB. In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol. 2009;160(5):1026–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamdoon Z, Jerjes W, Upile T, Hopper C. Optical coherence tomography-guided photodynamic therapy for skin cancer: case study. Photodiagnosis Photodyn Ther. 2011;8(1):49–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13(3):186–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117(1–2):43–8.CrossRefGoogle Scholar
  11. 11.
    Bail MA, Häusler G, Herrmann JM, Lindner MW, Ringler R. Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry. Proc SPIE. 1996;2925:298–303.CrossRefGoogle Scholar
  12. 12.
    Häusler G, Lindner MW. ‘Coherence radar’ and ‘spectral radar’ – new tools for dermatological diagnosis. J Biomed Opt. 1998;3(1):21–31.CrossRefGoogle Scholar
  13. 13.
    Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt Lett. 1997;22(22):1704–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Haberland U, Rütten W, Blazek V, Schmitt HJ. Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser. Proc SPIE. 1995;2389:503–12.CrossRefGoogle Scholar
  16. 16.
    Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt. 2004;9(1):47–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett. 2001;26(9):608–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Považay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, et al. Submicrometer axial resolution optical coherence tomography. Opt Lett. 2002;27(20):1800–2.PubMedCrossRefGoogle Scholar
  19. 19.
    Inoué S. Foundations of confocal scanned imaging in light microscopy. In: Pawley JB, editor. Handbook of biological confocal microscopy. 3 ed. Springer: New York; 2006.Google Scholar
  20. 20.
    Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. Optical coherence microscopy in scattering media. Opt Lett. 1994;19(8):590–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Bouma BE, Yun S-H, Vakoc BJ, Suter MJ, Tearney GJ. Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr Opin Biotechnol. 2009;20(1):111–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Parrish JA. New concepts in therapeutic photomedicine; photochemistry, optical targeting and the therapeutic window. J Invest Dermatol. 1981;77(1):45–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Gambichler T, Matip R, Moussa G, Altmeyer P, Hoffmann K. In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site. J Dermatol Sci. 2006;44(3):145–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Mogensen M, Morsy HA, Thrane L, Jemec GB. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology. 2008;217(1):14–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Welzel J, Lankenau E, Birngruber R, Engelhardt R. Optical coherence tomography of the human skin. J Am Acad Dermatol. 1997;37(6):958–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Welzel J, Reinhardt C, Lankenau E, Winter C, Wolff HH. Changes in function and morphology of normal human skin: evaluation using optical coherence tomography. Br J Dermatol. 2004;150(2):220–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Querleux B, Baldeweck T, Diridollou S, de Rigal J, Huguet E, Leroy F, et al. Skin from various ethnic origins and aging: an in vivo cross-sectional multimodality imaging study. Skin Res Technol. 2009;15(3):306–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Abuzahra F, Baron JM. Optical coherence tomography of the skin: a diagnostic light look. Hautarzt. 2006;57(7):646–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Barton JK, Gossage KW, Xu W, Ranger-Moore JR, Saboda K, Brooks CA, et al. Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study. Technol Cancer Res Treat. 2003;2(6):525–35.PubMedGoogle Scholar
  30. 30.
    Bechara FG, Gambichler T, Stucker M, Orlikov A, Rotterdam S, Altmeyer P, et al. Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol. 2004;10(3):169–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, et al. In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol. 2000;6(1):6–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol. 2006;55(3):408–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatol Surg. 2007;33(4):421–5; discussion 5–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Welzel J. Optical coherence tomography. Hautarzt. 2010;61(5):416–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol. 2001;7(1):1–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF. Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol. 2004;123(3):458–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stucker M, et al. In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci. 2007;45(3):167–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Ulrich M, Stockfleth E, Roewert-Huber J, Astner S. Noninvasive diagnostic tools for nonmelanoma skin cancer. Br J Dermatol. 2007;157 Suppl 2:56–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Strasswimmer J, Pierce M, Park B, et al. Characterization of basal cell carcinoma by multifunctional optical coherence tomography. J Invest Dermatol. 2003;121:156.CrossRefGoogle Scholar
  40. 40.
    Jensen L, Thrane L, Andersen P, et al. Optical coherence tomography in clinical examination of non-pigmented skin malignancies. Proc SPIE-OSA Biomed Opt SPIE. 2003;5140:160–7.Google Scholar
  41. 41.
    Andretzky P, Lindner M, Herrmann J, et al. Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin. Proc SPIE. 1998;3567:78–87.CrossRefGoogle Scholar
  42. 42.
    Jerjes W, Upile T, Conn B, Hamdoon Z, Betz CS, McKenzie G, et al. In vitro examination of suspicious oral lesions using optical coherence tomography. Br J Oral Maxillofac Surg. 2010;48(1):18–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilder-Smith P, Jung WG, Brenner M, Osann K, Beydoun H, Messadi D, et al. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med. 2004;35(4):269–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Forsea AM, Carstea EM, Ghervase L, Giurcaneanu C, Pavelescu G. Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study. J Med Life. 2010;3(4):381–9.PubMedGoogle Scholar
  45. 45.
    Khandwala M, Penmetsa BR, Dey S, Schofield JB, Jones CA, Podoleanu A. Imaging of periocular basal cell carcinoma using en face optical coherence tomography: a pilot study. Br J Ophthalmol. 2010;94(10):1332–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Mogensen M, Joergensen TM, Nurnberg BM, Morsy HA, Thomsen JB, Thrane L, et al. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35(6):965–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K, et al. Using optical coherence tomography to evaluate skin sun damage and precancer. Lasers Surg Med. 2007;39(9):687–95.PubMedCrossRefGoogle Scholar
  48. 48.
    Cunha D, Richardson T, Sheth N, Orchard G, Coleman A, Mallipeddi R. Comparison of ex vivo optical coherence tomography with conventional frozen-section histology for visualizing basal cell carcinoma during Mohs micrographic surgery. Br J Dermatol. 2011;165(3):576–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Mogensen M, Nurnberg BM, Thrane L, Jorgensen TM, Andersen PE, Jemec GB. How histological features of basal cell carcinomas influence image quality in optical coherence tomography. J Biophotonics. 2011;4(7–8):544–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Say EA, Shah SU, Ferenczy S, Shields CL. Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol. 2011;2011:385058.PubMedGoogle Scholar
  51. 51.
    Bianciotto C, Shields CL, Guzman JM, Romanelli-Gobbi M, Mazzuca Jr D, Green WR, et al. Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases. Ophthalmology. 2011;118(7):1297–302.PubMedGoogle Scholar
  52. 52.
    de Giorgi V, Stante M, Massi D, Mavilia L, Cappugi P, Carli P. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol. 2005;14(1):56–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, et al. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol. 2007;57(4):629–37.PubMedCrossRefGoogle Scholar
  54. 54.
    Smith L, Macneil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res Technol. 2011;17:257–69.CrossRefGoogle Scholar
  55. 55.
    Petrova G, Derpalyek E, Gladkova N, et al. Optical coherence tomography using tissue clearing for skin disease diagnosis. Proc SPIE. 2003;5140:168–86.CrossRefGoogle Scholar
  56. 56.
    Buchwald HJ, Muller A, Kampmeier J, Lang GK. Optical coherence tomography versus ultrasound biomicroscopy of conjunctival and eyelid lesions. Klin Monbl Augenheilkd. 2003;220(12):822–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Wennberg AM. Basal cell carcinoma–new aspects of diagnosis and treatment. Acta Derm Venereol Suppl (Stockh). 2000;209:5–25.Google Scholar
  58. 58.
    Zhang EZ, Povazay B, Laufer J, Alex A, Hofer B, Pedley B, et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed Opt Express. 2011;2(8):2202–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Mogensen M, Jorgensen TM, Thrane L, Nurnberg BM, Jemec GB. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction. Exp Dermatol. 2010;19(8):e293–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt. 2004;9(2):292–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med. 2011;43(2):143–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K. Applications of optical coherence tomography in dermatology. J Dermatol Sci. 2005;40(2):85–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Patel JK, Konda S, Perez OA, Amini S, Elgart G, Berman B. Newer technologies/techniques and tools in the diagnosis of melanoma. Eur J Dermatol. 2008;18(6):617–31.PubMedGoogle Scholar
  64. 64.
    Jorgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GB. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol. 2008;14(3):364–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Pomerantz R, Zell D, McKenzied G, Siegel DM. Optical coherence tomography used as a modality to delineate basal cell carcinoma prior to Mohs micrographic surgery. Case Rep Dermatol. 2011;3:212–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mette Mogensen
    • 1
    • 2
  • Lotte Themstrup
    • 1
  • Christina Banzhaf
    • 1
  • Sebastian Marschall
    • 3
  • Peter E. Andersen
    • 3
  • Gregor B. E. Jemec
    • 1
  1. 1.Department of Dermatology, Faculty of Health Sciences, Roskilde HospitalUniversity of CopenhagenRoskildeDenmark
  2. 2.Department of Dermatology, Bispebjerg HospitalUniversity of CopenhagenCopenhagenDenmark
  3. 3.DTU Fotonik – Department of Photonics EngineeringTechnical University of DenmarkRoskildeDenmark

Personalised recommendations