Skip to main content

Embryology and Anatomy of the Skin

  • Chapter
  • First Online:
Skin Cancer

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The human skin is formed by two distinct layers: the upper superficial epidermis, composed by a pluristratified epithelium, covering a layer below, the dermis. This chapter describes the embryonic development of the human skin with a particular attention to the molecular mechanisms involved in the regulation of epidermal development and differentiation. Moreover, structure of the adult skin is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbieri M, Carinci P. L’apparato tegumentario. In: Barbieri M, Carinci P, editors. Embriologia. 2nd ed. Milano: Casa Editrice Ambrosiana; 1997. p. 422–7.

    Google Scholar 

  2. Ivanova IA, D’Souza SJA, Dagnino L. Signalling in the epidermis: the E2f cell cycle regulatory pathway in epidermal morphogenesis, re generation and transformation. Int J Biol Sci. 2005;1:87–95.

    PubMed  CAS  Google Scholar 

  3. Williams PL, Warwick R, Dyson M, et al. L’apparato tegumentario. In: Amprino R, editor. Anatomia del Gray. 3rd ed. Bologna: Zanichelli; 1993. p. 66–75.

    Google Scholar 

  4. McGrath JA, Eady RAJ, Pope FM. Anatomy and organization of human skin. In: Bums T, Breathnach S, Cox N, Griffiths C, editors. Rook’s textbook of dermatology. 7th ed. Hoboken: Blackwell Science Ltd; 2004. p. 45–128.

    Google Scholar 

  5. Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–42.

    PubMed  CAS  Google Scholar 

  6. Koster MI. p63 in skin development and ectodermal dysplasias. J Invest Dermatol. 2010;130:2352–8.

    PubMed  CAS  Google Scholar 

  7. Ebling FJ. Hormonal control and methods of measuring sebaceous gland activity. J Invest Dermatol 1974;62:161–71.

    PubMed  CAS  Google Scholar 

  8. Sengel P. Morphogenesis of skin. Cambridge: Cambridge University Press; 1976.

    Google Scholar 

  9. Olivera-Martinez I, Thelu J, Dhouailly D. Molecular mechanisms controlling dorsal dermis generation from the somatic dermomyotome. Int J Dev Biol. 2004;48:93–101.

    PubMed  CAS  Google Scholar 

  10. Fliniaux I, Viallet JP, Dhouailly D. Ventral vs. dorsal chick dermal progenitor specification. Int J Dev Biol. 2004;48:103–6.

    PubMed  CAS  Google Scholar 

  11. Olivera-Martinez I, Viallet JP, Michon F, et al. The different steps of skin formation in vertebrates. Int J Dev Biol. 2004;48:107–15.

    PubMed  CAS  Google Scholar 

  12. Holbrook KA, Hoff MS. Structure of the developing human embryo and fetal skin. Semin Dermatol. 1984;3:185–202.

    Google Scholar 

  13. Mack J, Anand S, Maytin EV. Proliferation and cornification during development of the mammalian epidermis. Birth Defects Res. 2005;75:314–29.

    CAS  Google Scholar 

  14. Smart IH. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. Br J Dermatol. 1970;82:276–82.

    PubMed  CAS  Google Scholar 

  15. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437:275–80.

    PubMed  CAS  Google Scholar 

  16. Koster MI, Roop DR. Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol. 2007;23:93–113.

    PubMed  CAS  Google Scholar 

  17. Holbrook KA, Odland GF. The fine structure of developing human epidermis: light, scanning and transmission electron microscopy of the periderm. J Invest Dermatol. 1975;65:16–38.

    PubMed  CAS  Google Scholar 

  18. Koster MI, Dai D, Marinari B, et al. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci U S A. 2007;104:3255–60.

    PubMed  CAS  Google Scholar 

  19. Gilbert SF. The epidermis and the origin of cutaneous structures. In: Gilbert SF, editor. Developmental biology. 7th ed. Sunderland: Sinauer Associates Inc., Publishers; 2003. p. 416–8.

    Google Scholar 

  20. Koster MI, Roop DR. The role of p63 in development and differentiation of the epidermis. J Dermatol Sci. 2004;34:3–9.

    PubMed  CAS  Google Scholar 

  21. Moll R, Franke WW, Schiller DL, et al. The catalog of human cytokeratins: patterns of expression in normal epithelial, tumors and cultured cells. Cell. 1982;31:11–24.

    PubMed  CAS  Google Scholar 

  22. Jackson B, Tilli CL, Hardman M, et al. Late cornified envelope family in differentiating epithelia – response to calcium and UV irradiation. J Invest Dermatol. 2005;124:1062–70.

    PubMed  CAS  Google Scholar 

  23. Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development. 1994;120:2369–83.

    PubMed  CAS  Google Scholar 

  24. Mehrel T, Hohl D, Rothnagel JA, et al. Identification of a major keratinocytes cell envelope protein, loricrin. Cell. 1990;61:1103–12.

    PubMed  CAS  Google Scholar 

  25. Yoneda K, Steinert PM. Overexpression of human loricrin in transgenic mice produces a normal phenotype. Proc Natl Acad Sci U S A. 1993;90:10754–8.

    PubMed  CAS  Google Scholar 

  26. Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocytes. Cell. 1980;19:1033–42.

    PubMed  CAS  Google Scholar 

  27. Bickenbach JR, Greer JM, Bundman DS, et al. Loricrin expression is coordinated with other epidermal proteins and the appearance of lipid lamellar granules in development. J Invest Dermatol. 1995;104:405–10.

    PubMed  CAS  Google Scholar 

  28. Brainerd Arey L. The integumentary system. In: Developmental anatomy. A textbook and laboratory manual of embryology. 7th ed. Philadelphia/London: WB Saunders Company; 1974. p. 439–41.

    Google Scholar 

  29. Vassar R, Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev. 1991;5:714–27.

    PubMed  CAS  Google Scholar 

  30. Guo L, Yu QC, Fuchs E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 1993;12:973–86.

    PubMed  CAS  Google Scholar 

  31. Lu P, Barad M, Vize PD. Xenopus p63 expression in early ectoderm and neuroectoderm. Mech Dev. 2001;102:275–8.

    PubMed  CAS  Google Scholar 

  32. Yasue A, Tao H, Moriyama K, et al. Cloning and expression of the chick p63 gene. Mech Dev. 2001;100:105–8.

    PubMed  CAS  Google Scholar 

  33. Bakkers J, Hild M, Kramer C, et al. Zebrafish ΔNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell. 2002;2:617–27.

    PubMed  CAS  Google Scholar 

  34. Lee H, Kimelman D. A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell. 2002;2:607–16.

    PubMed  CAS  Google Scholar 

  35. Green H, Easley K, Iuchi S. Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci U S A. 2003;100:15625–30.

    PubMed  CAS  Google Scholar 

  36. Koster MI, Kim S, Mills AA, et al. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 2004;18:126–31.

    PubMed  CAS  Google Scholar 

  37. Mills AA, Zheng B, Wang XJ, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–13.

    PubMed  CAS  Google Scholar 

  38. Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–8.

    PubMed  CAS  Google Scholar 

  39. Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.

    PubMed  CAS  Google Scholar 

  40. Leask A, Byrne C, Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A. 1991;88:7948–52.

    PubMed  CAS  Google Scholar 

  41. Sinha S, Degenstein L, Copenhaver C, et al. Defining the regulatory factors required for epidermal gene expression. Mol Cell Biol. 2000;20:2543–55.

    PubMed  CAS  Google Scholar 

  42. Kaufman CK, Sinha S, Bolotin D, et al. Dissection of a complex enhancer element: maintenance of keratinocytes specificity but loss of differentiation specificity. Mol Cell Biol. 2002;22:4293–308.

    PubMed  CAS  Google Scholar 

  43. Romano RA, Birkaya B, Sinha S. A functional enhancer of keratin K14 is a direct transcriptional target of ΔNp63. J Invest Dermatol. 2007;127:1175–86.

    PubMed  CAS  Google Scholar 

  44. Cheng X, Koch PJ. In vivo function of desmosomes. J Dermatol. 2004;31:171–87.

    PubMed  Google Scholar 

  45. Ihrie RA, MArques MR, Nguyen BT, et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell. 2005;120:843–56.

    PubMed  CAS  Google Scholar 

  46. Larsen M, Artym VV, Green JA, et al. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol. 2006;18:463–71.

    PubMed  CAS  Google Scholar 

  47. Kurata S, Okuyama T, Osada M, et al. p51/p63 controls subunit alpha3 of the major epidermis integrin anchoring the stem cells to the niche. J Biol Chem. 2004;279:50069–77.

    PubMed  CAS  Google Scholar 

  48. Carrol DK, Carrol JS, Leong CO, et al. p63 regulates an adhesion program and cell survival in epithelial cells. Nat Cell Biol. 2006;8:551–61.

    Google Scholar 

  49. Candi E, Rufini A, Terrinoni A, et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ. 2006;13:1037–47.

    PubMed  CAS  Google Scholar 

  50. Vermuelen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.

    Google Scholar 

  51. Dellambra E, Patrone M, Sparatore B, et al. Stratifin, a keratinocyte specific 14-3-3 protein, harbors a pleckstrin homology (PH) domain and enhances protein kinase C activity. J Cell Sci. 1995;108:3569–79.

    PubMed  CAS  Google Scholar 

  52. Dellambra E, Golisano O, Bondanza S, et al. Downregulation of 14-3-3σ prevents clonal evolution and leads to immortalization of primary human keratinocytes. J Cell Biol. 2000;149:1117–30.

    PubMed  CAS  Google Scholar 

  53. Missero C, Calautti E, Eckner R, et al. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci U S A. 1995;92:5451–5.

    PubMed  CAS  Google Scholar 

  54. Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98:3156–61.

    PubMed  CAS  Google Scholar 

  55. Westfall MD, Mays DJ, Sniezek JC, et al. The ΔNp63α phosphoprotein binds the p21 and 14-3-3σ promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003;23:2264–76.

    PubMed  CAS  Google Scholar 

  56. Mhawech P. 14-3-3 proteins – an update. Cell Res. 2005;15:228–36.

    PubMed  CAS  Google Scholar 

  57. Nguyen BC, Lefort K, Mandinova A, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006;20:1028–42.

    PubMed  CAS  Google Scholar 

  58. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–36.

    PubMed  CAS  Google Scholar 

  59. Baldi A, De Falco M, De Luca L, et al. Characterization of tissue specific expression of Notch-1 in human tissues. Biol Cell. 2004;96:303–11.

    PubMed  CAS  Google Scholar 

  60. Nickoloff BJ, Qin JZ, Chaturvedi V, et al. Jagged-1 mediated activation of Notch signaling induces complete maturation of human keratinocytes through NF-κB and PPargamma. Cell Death Differ. 2002;9:842–55.

    PubMed  CAS  Google Scholar 

  61. Guan E, Wang J, Laborda J, et al. T cell leukemia-associated human Notch/trans location-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells. J Exp Med. 1996;183:2025–32.

    PubMed  CAS  Google Scholar 

  62. Su X, Cho MS, Gi YJ, et al. Rescue of key features of the p63-null epithelial phenotype by inactivation of Ink4a and Arf. EMBO J. 2009;28:1904–15.

    PubMed  CAS  Google Scholar 

  63. D’Erchia AM, Tullo A, Lefkimmiatis K, et al. The fatty acid synthase gene is a conserved p53 family target from worm to human. Cell Cycle. 2006;5:750–8.

    PubMed  Google Scholar 

  64. Sbisa E, Mastropasqua G, Lefkimmiatis K, et al. Connecting p63 to cellular proliferation: the example of the adenosine deaminase target gene. Cell Cycle. 2006;5:205–12.

    PubMed  CAS  Google Scholar 

  65. Truong AB, Kretz M, Ridky TW, et al. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 2006;20:3185–97.

    PubMed  CAS  Google Scholar 

  66. Lefkimmiatis K, Caratozzolo MF, Merlo P, et al. p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res. 2009;69:8563–71.

    PubMed  CAS  Google Scholar 

  67. Classon M, Dyson N. p107 and p130: versatile proteins with interesting pockets. Exp Cell Res. 2001;264:135–47.

    PubMed  CAS  Google Scholar 

  68. Testoni B, Mantovani R. Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63. Nucleic Acids Res. 2006;34:928–38.

    PubMed  CAS  Google Scholar 

  69. Martinez LA, Chen Y, Fischer SM, et al. Coordinated changes in cell cycle machinery occur during keratinocyte terminal differentiation. Oncogene. 1999;18:397–406.

    PubMed  CAS  Google Scholar 

  70. Beretta C, Chiarelli A, Testoni B, et al. Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle. 2005;4:1625–31.

    PubMed  CAS  Google Scholar 

  71. Seitz CS, Lin Q, Deng H, et al. Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappa B. Proc Natl Acad Sci U S A. 1998;95:2307–12.

    PubMed  CAS  Google Scholar 

  72. Seitz CS, Deng H, Hinata K, et al. Nuclear factor kappaB subunits induce epithelial cell growth arrest. Cancer Res. 2000;60:4085–92.

    PubMed  CAS  Google Scholar 

  73. Weiss LW, Zelickson AS. Embryology of the epidermis: ultrastructural aspects. II. Period of differentiation in the mouse with mammalian comparisons. Acta Derm Venereol. 1975;55:321–9.

    PubMed  CAS  Google Scholar 

  74. King KE, Ponnamperuma RM, Gerdes MJ, et al. Unique domain functions of p63 isotypes that differentially regulate distinct aspects of epidermal homeostasis. Carcinogenesis. 2006;27:53–63.

    PubMed  CAS  Google Scholar 

  75. Yi R, Poy MN, Stoffel M, et al. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–9.

    PubMed  CAS  Google Scholar 

  76. Lena AM, Shalom-Feuerstein R, di Val Cervo PR, et al. miR-203 represses ‘stemness’ by re pressing [Delta]Np63. Cell Death Differ. 2008;15:1187–95.

    PubMed  CAS  Google Scholar 

  77. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS One. 2007;2:e610.

    PubMed  Google Scholar 

  78. Rossi M, Aqeilan RI, Neale M, et al. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci U S A. 2006;103:12753–8.

    PubMed  CAS  Google Scholar 

  79. Vivo M, Di CA, Fortugno P, et al. Downregulation of DeltaNp63alpha in keratinocytes by p14ARF- mediated SUMO-conjugation and degradation. Cell Cycle. 2003;8:3537–43.

    Google Scholar 

  80. Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science. 1999;284:316–20.

    PubMed  CAS  Google Scholar 

  81. Li Q, Lu Q, Estepa G, et al. Identification of 14-3-3σ mutation causing cutaneous abnormality in repeated-epilation mutant mouse. Proc Natl Acad Sci U S A. 1999;102:15977–82.

    Google Scholar 

  82. Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities in mice lacking IKKα. Science. 1999;284:313–6.

    PubMed  CAS  Google Scholar 

  83. Marinari B, Ballaro C, Koster MI, et al. IKK[alpha] is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. J Invest Dermatol. 2008;129:60–9.

    PubMed  Google Scholar 

  84. Sil AK, Maeda S, Sano Y, et al. IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature. 2004;428:660–4.

    PubMed  CAS  Google Scholar 

  85. Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985;84:508–12.

    PubMed  CAS  Google Scholar 

  86. Menon GK, Elias PM, Lee SH, et al. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res. 1992;270:503–12.

    PubMed  CAS  Google Scholar 

  87. Elias PM, Nau P, Hanley K, et al. Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol. 1998;110:399–404.

    PubMed  CAS  Google Scholar 

  88. Lee E, Yuspa SH. Changes in inositol phosphate metabolism are associated with terminal differentiation and neoplasia in mouse keratinocytes. Carcinogenesis. 1991;12:1651–8.

    PubMed  CAS  Google Scholar 

  89. Dlugosz AA, Yuspa SH. Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase C. J Cell Biol. 1993;120:217–25.

    PubMed  CAS  Google Scholar 

  90. Yuspa SH, Kilkenny AE, Steinert PM, et al. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989;109:1207–17.

    PubMed  CAS  Google Scholar 

  91. Dlugosz AA, Yuspa SH. Protein kinase C regulates keratinocyte transglutaminase (TGK) gene expression in cultured primary mouse epidermal keratinocytes induced to terminally differentiate by calcium. J Invest Dermatol. 1994;102:409–14.

    PubMed  CAS  Google Scholar 

  92. Garrett-Sinha LA, Eberspaecher H, Seldin MF, et al. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem. 1996;271:31384–90.

    PubMed  CAS  Google Scholar 

  93. Segre JA, Bauer C, Fuchs E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999;22:356–60.

    PubMed  CAS  Google Scholar 

  94. Ting SB, Caddy J, Hislop N, et al. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science. 2005;308:411–3.

    PubMed  CAS  Google Scholar 

  95. Yu Z, Lin KK, Bhandari A, et al. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol. 2006;299:122–36.

    PubMed  CAS  Google Scholar 

  96. Lopardo T, Lo IN, Marinari B, et al. Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS One. 2008;3:e2715.

    PubMed  Google Scholar 

  97. Kim S, Choi IF, Quante JR, et al. p63 directly induces expression of Alox12, a regulator of epidermal barrier formation. Exp Dermatol. 2009;18:1016–21.

    PubMed  CAS  Google Scholar 

  98. Hanley K, Komuves LG, Bass NM, et al. Fetal epidermal differentiation and barrier development in vivo is accelerated by nuclear hormone receptor activators. J Invest Dermatol. 1999;113:788–95.

    PubMed  CAS  Google Scholar 

  99. Hanley K, Jiang Y, He SS, et al. Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPARalpha. J Invest Dermatol. 1998;110:368–75.

    PubMed  CAS  Google Scholar 

  100. Kim DJ, Bility MT, Billin AN, et al. PPARbeta/delta selectively induces differentiation and inhibits cell proliferation. Cell Death Differ. 2006;13:53–60.

    PubMed  CAS  Google Scholar 

  101. Komuves LG, Hanley K, Lefebvre AM, et al. Stimulation of PPARalpha promotes epidermal keratinocyte differentiation in vivo. J Invest Dermatol. 2000;115:353–60.

    PubMed  CAS  Google Scholar 

  102. Fuchs E, Byrne C. The epidermis: rising to the surface. Curr Opin Genet Dev. 1994;4:725–36.

    PubMed  CAS  Google Scholar 

  103. Aberdam D, Candi E, Knight RA, et al. miRNAs, ‘stemness’ and skin. Trends Biochem Sci. 2008;33:583–91.

    PubMed  CAS  Google Scholar 

  104. Lavker RM, Matoltsy AG. Substructure of keratohyalin granules of the epidermis as revealed by high resolution electron microscopy. J Ultrastruct Res. 1971;35:575–81.

    PubMed  CAS  Google Scholar 

  105. Odland GF. Structure of the skin. In: Goldsmith LA, editor. Physiology, biochemistry and molecular biology of the skin. New York: Oxford University Press; 1991. p. 3–62.

    Google Scholar 

  106. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6:328–40.

    PubMed  CAS  Google Scholar 

  107. Lynley AM, Dale BA. The characterization of human epidermal filaggrin, a histidine-rich keratin filament-aggregating protein. Biochim Biophys Acta. 1983;744:28–35.

    PubMed  CAS  Google Scholar 

  108. Rice RH, Green H. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell. 1977;11:417–22.

    PubMed  CAS  Google Scholar 

  109. Buxman MM, Wuepper KD. Cellular localization of epidermal trans-glutaminase: a histochemical and immunochemical study. J Histochem Cytochem. 1978;26:340–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Luca PhD .

Editor information

Editors and Affiliations

Glossary

Dermis

is the skin layer under the epidermis. It is a dense connective tissue which functions as a mechanical device for the attachment of the epidermis and for its nourishing. It contains collagen and elastic fibers, glands, hair follicles and blood vessels. The mature dermis can be divided in two distinct layers: a superficial thin papillary layer and a deeper reticular layer.

Epidermis

a stratified pavement epithelium that forms the outermost layer of the skin. It is interconnected with the dermis, the below connective tissue and functions as the first barrier between the organism and the environment. The epidermis can be divided into four distinct layers: stratum basale or stratum germinativum, stratum spinosum, stratum granulosum, and stratum corneum.

Keratinocytes

the cells that form all the epidermis layers at various stages of differentiation and proliferative potential. They contain several types of keratins. The basal keratinocytes specifically express K5 and K14.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Falco, M., Pisano, M.M., De Luca, A. (2014). Embryology and Anatomy of the Skin. In: Baldi, A., Pasquali, P., Spugnini, E. (eds) Skin Cancer. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7357-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7357-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7356-5

  • Online ISBN: 978-1-4614-7357-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics