Skip to main content

The Relationship Between Oxidative Stress Responses and Lung Inflammation with Cigarette Smoking

  • Chapter
  • First Online:

Abstract

Cigarette smoking represents a major world health hazard. In fact, chronic cigarette smoking is the leading risk factor for the development of chronic obstructive pulmonary disease (COPD), the world's third leading cause of death and accounts for 90 % of lung cancers [1, 2]. Cigarette smoking produces adverse respiratory effects by exposing the airways and lung parenchyma to a variety of reactive oxygen species (ROS) and other toxic compounds. Although the molecular mechanisms underlying lung and airway damage in response to cigarette smoke remain incompletely understood, ROS are believed to produce tissue injury by affecting the function and gene expression profiles of lung structural cells and inflammatory cells. In fact, cigarette smoke exposure alters the expression of >600 genes in human monocytes [3]. Specifically, ROS exert direct deleterious effects on cell structure and function by damaging protein lipid and DNA macromolecules which impair cellular function, induce apoptosis, and stimulate dysfunctional matrix remodeling in the lung in the respiratory tract. Furthermore, cigarette smoke-induced cell damage causes the release of alarmins, cytokines, chemokines and up-regulation of adhesion molecules by epithelial cells in the airway and lung which collectively serve to attract an inflammatory cell infiltrate. In addition, bacterial constituents present in cigarette smoke further shape the intensity and inflammatory response by activating PAMPs expressed by lung cells which, in turn, interact with the cell’s oxidant defense mechanisms [4, 5]. Moreover, the inflammatory process generated by the innate immune system, in turn, increases oxidant stress in the lung through the production of the superoxide ion by infiltrating neutrophils. Accordingly, the inflammatory reaction in the lung induced by oxidants in cigarette smoke has the potential to act as a positive feedback loop or self-amplifying process which exacerbates both conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shapiro SD, Ingenito EP (2005) The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years. Am J Respir Cell Mol Biol 32(5):367–372

    PubMed  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention (CDC) (2006) Tobacco use among adults-united states, 2005. MMWR Morb Mortal Wkly Rep 55:1145–1148

    Google Scholar 

  3. Wright WR, Parzych K, Crawford D, Mein C, Mitchell JA, Paul-Clark MJ (2012) Inflammatory transcriptome profiling of human monocytes exposed acutely to cigarette smoke. PLoS One 7(2):e30120

    PubMed  CAS  Google Scholar 

  4. Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA, Ron D, Tabas I (2009) Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 11(12):1473–1480

    PubMed  CAS  Google Scholar 

  5. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418

    PubMed  CAS  Google Scholar 

  6. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    PubMed  CAS  Google Scholar 

  7. MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(4):258–266, discussion 290–251

    PubMed  CAS  Google Scholar 

  8. Pryor WA, Stone K (1993) Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12–27, discussion 27–18

    PubMed  CAS  Google Scholar 

  9. Pryor WA, Stone K, Zang LY, Bermudez E (1998) Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol 11(5):441–448

    PubMed  CAS  Google Scholar 

  10. Huang MF, Lin WL, Ma YC (2005) A study of reactive oxygen species in mainstream of cigarette. Indoor Air 15(2):135–140

    PubMed  CAS  Google Scholar 

  11. Committee on Passive Smoking, National Research Council (1986) Environmental tobacco smoke: measuring exposures and assessing health effects. National Academy Press, Washington, DC

    Google Scholar 

  12. Diekmann J, Wittig A, Stabbert R (2008) Gas chromatographic-mass spectrometric analysis of acrylamide and acetamide in cigarette mainstream smoke after on-column injection. J Chromatogr Sci 46(7):659–663

    PubMed  CAS  Google Scholar 

  13. Seagrave J (2000) Oxidative mechanisms in tobacco smoke-induced emphysema. J Toxicol Environ Health A 61(1):69–78

    PubMed  CAS  Google Scholar 

  14. Lambeth JD (2004) Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    PubMed  CAS  Google Scholar 

  15. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, Kondo S, Nishimura M (2008) Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 39(6): 673–682

    PubMed  CAS  Google Scholar 

  16. Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH (2006) Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 8(9–10):1447–1459

    PubMed  CAS  Google Scholar 

  17. Fink K, Duval A, Martel A, Soucy-Faulkner A, Grandvaux N (2008) Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kappaB in airway epithelial cells. J Immunol 180(10):6911–6922

    PubMed  CAS  Google Scholar 

  18. Zhang WJ, Wei H, Tien YT, Frei B (2011) Genetic ablation of phagocytic NADPH oxidase in mice limits TNFalpha-induced inflammation in the lungs but not other tissues. Free Radic Biol Med 50(11):1517–1525

    PubMed  CAS  Google Scholar 

  19. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140

    PubMed  CAS  Google Scholar 

  20. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    PubMed  CAS  Google Scholar 

  21. Lin CC, Lee IT, Yang YL, Lee CW, Kou YR, Yang CM (2010) Induction of COX-2/PGE(2)/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: role of TLR4-dependent NADPH oxidase activation. Free Radic Biol Med 48(2):240–254

    PubMed  CAS  Google Scholar 

  22. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB (2007) Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol Biol Cell 18(6):2002–2012

    PubMed  CAS  Google Scholar 

  23. Zinkevich NS, Gutterman DD (2011) ROS-induced ROS release in vascular biology: redox-redox signaling. Am J Physiol Heart Circ Physiol 301(3):H647–H653

    PubMed  CAS  Google Scholar 

  24. Asano H, Horinouchi T, Mai Y, Sawada O, Fujii S, Nishiya T, Minami M, Katayama T, Iwanaga T, Terada K et al (2012) Nicotine- and tar-free cigarette smoke induces cell damage through reactive oxygen species newly generated by PKC-dependent activation of NADPH oxidase. J Pharmacol Sci 118(2):275–287

    PubMed  CAS  Google Scholar 

  25. Jaimes EA, DeMaster EG, Tian RX, Raij L (2004) Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler Thromb Vasc Biol 24(6):1031–1036

    PubMed  CAS  Google Scholar 

  26. Reddy S, Finkelstein EI, Wong PS, Phung A, Cross CE, van der Vliet A (2002) Identification of glutathione modifications by cigarette smoke. Free Radic Biol Med 33(11):1490–1498

    PubMed  CAS  Google Scholar 

  27. Grafstrom RC, Dypbukt JM, Willey JC, Sundqvist K, Edman C, Atzori L, Harris CC (1988) Pathobiological effects of acrolein in cultured human bronchial epithelial cells. Cancer Res 48(7):1717–1721

    PubMed  CAS  Google Scholar 

  28. Nardini M, Finkelstein EI, Reddy S, Valacchi G, Traber M, Cross CE, van der Vliet A (2002) Acrolein-induced cytotoxicity in cultured human bronchial epithelial cells. Modulation by alpha-tocopherol and ascorbic acid. Toxicology 170(3):173–185

    PubMed  CAS  Google Scholar 

  29. Jia L, Zhang Z, Zhai L, Bai Y (2009) Protective effect of lipoic acid against acrolein-induced cytotoxicity in imr-90 human fibroblasts. J Nutr Sci Vitaminol (Tokyo) 55(2):126–130

    CAS  Google Scholar 

  30. Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A, Motchnik PA, Packer L, Halliwell B (1992) Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J 286(Pt 2):607–611

    PubMed  CAS  Google Scholar 

  31. O’Neill CA, Halliwell B, van der Vliet A, Davis PA, Packer L, Tritschler H, Strohman WJ, Rieland T, Cross CE, Reznick AZ (1994) Aldehyde-induced protein modifications in human plasma: protection by glutathione and dihydrolipoic acid. J Lab Clin Med 124(3):359–370

    PubMed  Google Scholar 

  32. Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin MH, Plewak DJ (2008) Acrolein environmental levels and potential for human exposure. Toxicol Ind Health 24(8):543–564

    PubMed  CAS  Google Scholar 

  33. Leikauf GD (2002) Hazardous air pollutants and asthma. Environ Health Perspect 110(Suppl 4):505–526

    PubMed  CAS  Google Scholar 

  34. Corradi M, Pignatti P, Manini P, Andreoli R, Goldoni M, Poppa M, Moscato G, Balbi B, Mutti A (2004) Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur Respir J 24(6):1011–1017

    PubMed  CAS  Google Scholar 

  35. Deshmukh HS, Shaver C, Case LM, Dietsch M, Wesselkamper SC, Hardie WD, Korfhagen TR, Corradi M, Nadel JA, Borchers MT et al (2008) Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. Am J Respir Cell Mol Biol 38(4):446–454

    PubMed  CAS  Google Scholar 

  36. Borchers MT, Wesselkamper SC, Harris NL, Deshmukh H, Beckman E, Vitucci M, Tichelaar JW, Leikauf GD (2007) CD8+ T cells contribute to macrophage accumulation and airspace enlargement following repeated irritant exposure. Exp Mol Pathol 83(3):301–310

    PubMed  CAS  Google Scholar 

  37. Li L, Hamilton RF Jr, Taylor DE, Holian A (1997) Acrolein-induced cell death in human alveolar macrophages. Toxicol Appl Pharmacol 145(2):331–339

    PubMed  CAS  Google Scholar 

  38. Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A, Gaggar A, Shastry S, Rowe SM, Shim YM, Hussell T et al (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330(6000):90–94

    PubMed  CAS  Google Scholar 

  39. Bein K, Leikauf GD (2011) Acrolein – a pulmonary hazard. Mol Nutr Food Res 55(9): 1342–1360

    PubMed  CAS  Google Scholar 

  40. Lambert C, Li J, Jonscher K, Yang TC, Reigan P, Quintana M, Harvey J, Freed BM (2007) Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-kappaB1 DNA binding domain. J Biol Chem 282(27):19666–19675

    PubMed  CAS  Google Scholar 

  41. Myers CR, Myers JM (2009) The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells. Toxicology 257(1–2):95–104

    PubMed  CAS  Google Scholar 

  42. Zhang H, Forman HJ (2008) Acrolein induces heme oxygenase-1 through PKC-delta and PI3K in human bronchial epithelial cells. Am J Respir Cell Mol Biol 38(4):483–490

    PubMed  Google Scholar 

  43. Elinder CG, Kjellstrom T, Lind B, Linnman L, Piscator M, Sundstedt K (1983) Cadmium exposure from smoking cigarettes: variations with time and country where purchased. Environ Res 32(1):220–227

    PubMed  CAS  Google Scholar 

  44. Scherer G, Barkemeyer H (1983) Cadmium concentrations in tobacco and tobacco smoke. Ecotoxicol Environ Saf 7(1):71–78

    PubMed  CAS  Google Scholar 

  45. Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, Liu TP, Chiu JF, Chen CT (2006) Effects of cadmium on structure and enzymatic activity of Cu, Zn-SOD and oxidative status in neural cells. J Cell Biochem 98(3):577–589

    PubMed  CAS  Google Scholar 

  46. Ahmed MJ, Chowdhury MT (2004) A simple spectrophotometric method for the determination of cadmium in industrial, environmental, biological and soil samples using 5,7-dibromo-8-hydroxyquinoline. Anal Sci 20(6):987–990

    PubMed  CAS  Google Scholar 

  47. Hayes JA, Snider GL, Korthy AL (1973) Lesions resembling centrilobular emphysema induced in rats by exposure to aerosolized solutions of cadmium chloride. Chest 63(Suppl): 68S–69S

    PubMed  Google Scholar 

  48. Snider GL, Hayes JA, Korthy AL, Lewis GP (1973) Centrilobular emphysema experimentally induced by cadmium chloride aerosol. Am Rev Respir Dis 108(1):40–48

    PubMed  CAS  Google Scholar 

  49. Thurlbeck WM, Foley FD (1963) Experimental pulmonary emphysema: the effect of intratracheal injection of cadmium chloride solution in the guinea pig. Am J Pathol 42(4): 431–441

    PubMed  CAS  Google Scholar 

  50. Asvadi S, Hayes JA (1978) Acute lung injury induced by cadmium aerosol. II. Free airway cell response during injury and repair. Am J Pathol 90(1):89–98

    PubMed  CAS  Google Scholar 

  51. Nemery B (1990) Metal toxicity and the respiratory tract. Eur Respir J 3(2):202–219

    PubMed  CAS  Google Scholar 

  52. Patwardhan JR, Finckh ES (1976) Fatal cadmium-fume pneumonitis. Med J Aust 1(25): 962–966

    PubMed  CAS  Google Scholar 

  53. Barnhart S, Rosenstock L (1984) Cadmium chemical pneumonitis. Chest 86(5):789–791

    PubMed  CAS  Google Scholar 

  54. Zhang W, Fievez L, Cheu E, Bureau F, Rong W, Zhang F, Zhang Y, Advenier C, Gustin P (2010) Anti-inflammatory effects of formoterol and ipratropium bromide against acute cadmium-induced pulmonary inflammation in rats. Eur J Pharmacol 628(1–3):171–178

    PubMed  CAS  Google Scholar 

  55. McKenna IM, Waalkes MP, Chen LC, Gordon T (1997) Comparison of inflammatory lung responses in Wistar rats and C57 and DBA mice following acute exposure to cadmium oxide fumes. Toxicol Appl Pharmacol 146(2):196–206

    PubMed  CAS  Google Scholar 

  56. Yamano T, DeCicco LA, Rikans LE (2000) Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol 162(1):68–75

    PubMed  CAS  Google Scholar 

  57. Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, Chettle DR, Franklin D, Guthrie CJ, Scott MC et al (1988) Cadmium fume inhalation and emphysema. Lancet 1(8587):663–667

    PubMed  CAS  Google Scholar 

  58. Snider GL, Lucey EC, Faris B, Jung-Legg Y, Stone PJ, Franzblau C (1988) Cadmium-chloride-induced air-space enlargement with interstitial pulmonary fibrosis is not associated with destruction of lung elastin. Implications for the pathogenesis of human emphysema. Am Rev Respir Dis 137(4):918–923

    PubMed  CAS  Google Scholar 

  59. Ellis KJ, Vartsky D, Zanzi I, Cohn SH, Yasumura S (1979) Cadmium: in vivo measurement in smokers and nonsmokers. Science 205(4403):323–325

    PubMed  CAS  Google Scholar 

  60. Webb M, Verschoyle RD (1976) An investigation of the role of metallothioneins in protection against the acute toxicity of the cadmium ion. Biochem Pharmacol 25(6):673–679

    PubMed  CAS  Google Scholar 

  61. Kayaalti Z, Aliyev V, Soylemezoglu T (2011) The potential effect of metallothionein 2A–5A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels. Toxicol Appl Pharmacol 256(1):1–7

    PubMed  CAS  Google Scholar 

  62. Hendrick DJ (2004) Smoking, cadmium, and emphysema. Thorax 59(3):184–185

    PubMed  CAS  Google Scholar 

  63. Mannino DM, Holguin F, Greves HM, Savage-Brown A, Stock AL, Jones RL (2004) Urinary cadmium levels predict lower lung function in current and former smokers: data from the third national health and nutrition examination survey. Thorax 59(3):194–198

    PubMed  CAS  Google Scholar 

  64. Hirst RN Jr, Perry HM Jr, Cruz MG, Pierce JA (1973) Elevated cadmium concentration in emphysematous lungs. Am Rev Respir Dis 108(1):30–39

    PubMed  Google Scholar 

  65. Grasseschi RM, Ramaswamy RB, Levine DJ, Klaassen CD, Wesselius LJ (2003) Cadmium accumulation and detoxification by alveolar macrophages of cigarette smokers. Chest 124(5):1924–1928

    PubMed  CAS  Google Scholar 

  66. Hotz P, Buchet JP, Bernard A, Lison D, Lauwerys R (1999) Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet 354(9189):1508–1513

    PubMed  CAS  Google Scholar 

  67. Kitamura M, Hiramatsu N (2010) The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 23(5):941–950

    PubMed  CAS  Google Scholar 

  68. Somji S, Todd JH, Sens MA, Garrett SH, Sens DA (1999) Expression of the constitutive and inducible forms of heat shock protein 70 in human proximal tubule cells exposed to heat, sodium arsenite, and CdCl(2). Environ Health Perspect 107(11):887–893

    PubMed  CAS  Google Scholar 

  69. Tatrai E, Kovacikova Z, Hudak A, Adamis Z, Ungvary G (2001) Comparative in vitro toxicity of cadmium and lead on redox cycling in type II pneumocytes. J Appl Toxicol 21(6): 479–483

    PubMed  CAS  Google Scholar 

  70. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    PubMed  CAS  Google Scholar 

  71. Stockinger B, Hirota K, Duarte J, Veldhoen M (2011) External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin Immunol 23(2):99–105

    PubMed  CAS  Google Scholar 

  72. Dolwick KM, Schmidt JV, Carver LA, Swanson HI, Bradfield CA (1993) Cloning and expression of a human Ah receptor cDNA. Mol Pharmacol 44(5):911–917

    PubMed  CAS  Google Scholar 

  73. Li W, Donat S, Dohr O, Unfried K, Abel J (1994) Ah receptor in different tissues of C57BL/6J and DBA/2J mice: use of competitive polymerase chain reaction to measure Ah-receptor mRNA expression. Arch Biochem Biophys 315(2):279–284

    PubMed  CAS  Google Scholar 

  74. Carver LA, Hogenesch JB, Bradfield CA (1994) Tissue specific expression of the rat Ah-receptor and ARNT mRNAs. Nucleic Acids Res 22(15):3038–3044

    PubMed  CAS  Google Scholar 

  75. Wong PS, Vogel CF, Kokosinski K, Matsumura F (2010) Arylhydrocarbon receptor activation in NCI-H441 cells and C57BL/6 mice: possible mechanisms for lung dysfunction. Am J Respir Cell Mol Biol 42(2):210–217

    PubMed  CAS  Google Scholar 

  76. Thatcher TH, Maggirwar SB, Baglole CJ, Lakatos HF, Gasiewicz TA, Phipps RP, Sime PJ (2007) Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-kappaB component RelB. Am J Pathol 170(3):855–864

    PubMed  CAS  Google Scholar 

  77. Baglole CJ, Maggirwar SB, Gasiewicz TA, Thatcher TH, Phipps RP, Sime PJ (2008) The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-kappaB family member RelB. J Biol Chem 283(43):28944–28957

    PubMed  CAS  Google Scholar 

  78. Brioni JD, Decker MW, Sullivan JP, Arneric SP (1997) The pharmacology of (-)-nicotine and novel cholinergic channel modulators. Adv Pharmacol 37:153–214

    PubMed  CAS  Google Scholar 

  79. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    PubMed  CAS  Google Scholar 

  80. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    PubMed  CAS  Google Scholar 

  81. Mabley J, Gordon S, Pacher P (2011) Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34(4):231–237

    PubMed  CAS  Google Scholar 

  82. Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X (2012) Nicotine inhibits tumor necrosis factor-alpha induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int 32(1):97–104

    PubMed  CAS  Google Scholar 

  83. Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S (2003) Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107(4):604–611

    PubMed  CAS  Google Scholar 

  84. Penn A, Snyder CA (1993) Inhalation of sidestream cigarette smoke accelerates development of arteriosclerotic plaques. Circulation 88(4 Pt 1):1820–1825

    PubMed  CAS  Google Scholar 

  85. Pryor WA (1997) Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect 105(Suppl 4):875–882

    PubMed  CAS  Google Scholar 

  86. Pacht ER, Kaseki H, Mohammed JR, Cornwell DG, Davis WB (1986) Deficiency of vitamin E in the alveolar fluid of cigarette smokers. Influence on alveolar macrophage cytotoxicity. J Clin Invest 77(3):789–796

    PubMed  CAS  Google Scholar 

  87. Wurzel H, Yeh CC, Gairola C, Chow CK (1995) Oxidative damage and antioxidant status in the lungs and bronchoalveolar lavage fluid of rats exposed chronically to cigarette smoke. J Biochem Toxicol 10(1):11–17

    PubMed  CAS  Google Scholar 

  88. Thome GR, Spanevello RM, Mazzanti A, Fiorenza AM, Duarte MM, da Luz SC, Pereira ME, Morsch VM, Schetinger MR, Mazzanti CM (2011) Vitamin e decreased the activity of acetylcholinesterase and level of lipid peroxidation in brain of rats exposed to aged and diluted sidestream smoke. Nicotine Tob Res 13(12):1210–1219

    PubMed  CAS  Google Scholar 

  89. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349

    PubMed  CAS  Google Scholar 

  90. Bowler RP, Nicks M, Warnick K, Crapo JD (2002) Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 282(4):L719–L726

    PubMed  CAS  Google Scholar 

  91. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66

    PubMed  CAS  Google Scholar 

  92. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650

    PubMed  CAS  Google Scholar 

  93. Knorr-Wittmann C, Hengstermann A, Gebel S, Alam J, Muller T (2005) Characterization of Nrf2 activation and heme oxygenase-1 expression in NIH3T3 cells exposed to aqueous extracts of cigarette smoke. Free Radic Biol Med 39(11):1438–1448

    PubMed  Google Scholar 

  94. Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J, Nel A (2000) Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant-responsive element. J Immunol 165(6):3393–3401

    PubMed  CAS  Google Scholar 

  95. Slebos DJ, Ryter SW, van der Toorn M, Liu F, Guo F, Baty CJ, Karlsson JM, Watkins SC, Kim HP, Wang X et al (2007) Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol 36(4):409–417

    PubMed  CAS  Google Scholar 

  96. Camhi SL, Alam J, Wiegand GW, Chin BY, Choi AM (1998) Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5′ distal enhancers: role of reactive oxygen intermediates and AP-1. Am J Respir Cell Mol Biol 18(2):226–234

    PubMed  CAS  Google Scholar 

  97. Yee EL, Pitt BR, Billiar TR, Kim YM (1996) Effect of nitric oxide on heme metabolism in pulmonary artery endothelial cells. Am J Physiol 271(4 Pt 1):L512–L518

    PubMed  CAS  Google Scholar 

  98. Rangasamy T, Misra V, Zhen L, Tankersley CG, Tuder RM, Biswal S (2009) Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am J Physiol Lung Cell Mol Physiol 296(6):L888–L900

    PubMed  CAS  Google Scholar 

  99. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114(9):1248–1259

    PubMed  CAS  Google Scholar 

  100. Foronjy RF, Mirochnitchenko O, Propokenko O, Lemaitre V, Jia Y, Inouye M, Okada Y, D'Armiento JM (2006) Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am J Respir Crit Care Med 173(6):623–631

    PubMed  CAS  Google Scholar 

  101. Petrache I, Medler TR, Richter AT, Kamocki K, Chukwueke U, Zhen L, Gu Y, Adamowicz J, Schweitzer KS, Hubbard WC et al (2008) Superoxide dismutase protects against apoptosis and alveolar enlargement induced by ceramide. Am J Physiol Lung Cell Mol Physiol 295(1):L44–L53

    PubMed  CAS  Google Scholar 

  102. Gongora MC, Lob HE, Landmesser U, Guzik TJ, Martin WD, Ozumi K, Wall SM, Wilson DS, Murthy N, Gravanis M et al (2008) Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. Am J Pathol 173(4):915–926

    PubMed  CAS  Google Scholar 

  103. Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I (2010) Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci USA 107(35):15571–15576

    PubMed  CAS  Google Scholar 

  104. Maestrelli P, Paska C, Saetta M, Turato G, Nowicki Y, Monti S, Formichi B, Miniati M, Fabbri LM (2003) Decreased haem oxygenase-1 and increased inducible nitric oxide synthase in the lung of severe COPD patients. Eur Respir J 21(6):971–976

    PubMed  CAS  Google Scholar 

  105. Young RP, Hopkins R, Black PN, Eddy C, Wu L, Gamble GD, Mills GD, Garrett JE, Eaton TE, Rees MI (2006) Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 61(5):394–399

    PubMed  CAS  Google Scholar 

  106. Dahl M, Bowler RP, Juul K, Crapo JD, Levy S, Nordestgaard BG (2008) Superoxide dismutase 3 polymorphism associated with reduced lung function in two large populations. Am J Respir Crit Care Med 178(9):906–912

    PubMed  CAS  Google Scholar 

  107. Harju T, Kaarteenaho-Wiik R, Soini Y, Sormunen R, Kinnula VL (2002) Diminished immunoreactivity of gamma-glutamylcysteine synthetase in the airways of smokers’ lung. Am J Respir Crit Care Med 166(5):754–759

    PubMed  Google Scholar 

  108. He JQ, Ruan J, Connett JE, Anthonisen NR, Pare PD, Sandford AJ (2002) Antioxidant gene polymorphisms and susceptibility to a rapid decline in lung function in smokers. Am J Respir Crit Care Med 166(3):323–328

    PubMed  Google Scholar 

  109. Kinnula VL (2005) Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases. Thorax 60(8):693–700

    PubMed  CAS  Google Scholar 

  110. Juul K, Tybjaerg-Hansen A, Marklund S, Lange P, Nordestgaard BG (2006) Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173(8):858–864

    PubMed  CAS  Google Scholar 

  111. Mak JC, Ho SP, Yu WC, Choo KL, Chu CM, Yew WW, Lam WK, Chan-Yeung M (2007) Polymorphisms and functional activity in superoxide dismutase and catalase genes in smokers with COPD. Eur Respir J 30(4):684–690

    PubMed  CAS  Google Scholar 

  112. Siedlinski M, Postma DS, van Diemen CC, Blokstra A, Smit HA, Boezen HM (2008) Lung function loss, smoking, vitamin C intake, and polymorphisms of the glutamate-cysteine ligase genes. Am J Respir Crit Care Med 178(1):13–19

    PubMed  CAS  Google Scholar 

  113. Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34(4):176–188

    PubMed  CAS  Google Scholar 

  114. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-are pathway. Annu Rev Pharmacol Toxicol 47:89–116

    PubMed  CAS  Google Scholar 

  115. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276(24):20858–20865

    PubMed  CAS  Google Scholar 

  116. Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8(1–2):76–87

    PubMed  CAS  Google Scholar 

  117. Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR (2005) Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med 38(3):325–343

    PubMed  CAS  Google Scholar 

  118. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13(11):1649–1663

    PubMed  CAS  Google Scholar 

  119. Nguyen T, Huang HC, Pickett CB (2000) Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem 275(20):15466–15473

    PubMed  CAS  Google Scholar 

  120. Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H: quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93(25):14960–14965

    PubMed  CAS  Google Scholar 

  121. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP (2006) DJ-1, a cancer- and parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA 103(41):15091–15096

    PubMed  CAS  Google Scholar 

  122. Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Amara N, Crestani B, Fournier M, Leseche G, Soler P, Boczkowski J et al (2008) Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 63(10):916–924

    PubMed  CAS  Google Scholar 

  123. He X, Chen MG, Lin GX, Ma Q (2006) Arsenic induces NAD(P)H-quinone oxidoreductase i by disrupting the Nrf2 × Keap1 × Cul3 complex and recruiting Nrf2 × Maf to the antioxidant response element enhancer. J Biol Chem 281(33):23620–23631

    PubMed  CAS  Google Scholar 

  124. Apopa PL, He X, Ma Q (2008) Phosphorylation of nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J Biochem Mol Toxicol 22(1):63–76

    PubMed  CAS  Google Scholar 

  125. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20):7198–7209

    PubMed  CAS  Google Scholar 

  126. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279(19):20108–20117

    PubMed  CAS  Google Scholar 

  127. Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H: quinone oxidoreductase-1 gene expression. J Biol Chem 278(45):44675–44682

    PubMed  CAS  Google Scholar 

  128. Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, Donnelly LE, Biswal S, Ito K, Barnes PJ (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406(2):292–298

    PubMed  CAS  Google Scholar 

  129. Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M, Polack FP, Kleeberger SR (2009) Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 179(2):138–150

    PubMed  CAS  Google Scholar 

  130. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116(4):984–995

    PubMed  CAS  Google Scholar 

  131. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, Hegab AE, Homma S, Nomura A et al (2005) Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10(12):1113–1125

    PubMed  CAS  Google Scholar 

  132. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, Yates MS, Kombairaju P, Yamamoto M, Liby KT et al (2009) Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA 106(1):250–255

    PubMed  CAS  Google Scholar 

  133. Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P et al (2008) Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 178(6):592–604

    PubMed  CAS  Google Scholar 

  134. Nioi P, Hayes JD (2004) Contribution of NAD(P)H: quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res 555(1–2):149–171

    PubMed  CAS  Google Scholar 

  135. Blake DJ, Singh A, Kombairaju P, Malhotra D, Mariani TJ, Tuder RM, Gabrielson E, Biswal S (2010) Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Am J Respir Cell Mol Biol 42(5):524–536

    PubMed  CAS  Google Scholar 

  136. Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347

    PubMed  CAS  Google Scholar 

  137. Speciale A, Chirafisi J, Saija A, Cimino F (2011) Nutritional antioxidants and adaptive cell responses: an update. Curr Mol Med 11(9):770–789

    PubMed  CAS  Google Scholar 

  138. Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40(2):238–252

    PubMed  CAS  Google Scholar 

  139. Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L (2002) Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol 22(24):8506–8513

    PubMed  CAS  Google Scholar 

  140. Hu R, Ouyang Q, Dai A, Tan S, Xiao Z, Tang C (2011) Heat shock protein 27 and cyclophilin a associate with the pathogenesis of COPD. Respirology 16(6):983–993

    PubMed  Google Scholar 

  141. Ankersmit HJ, Nickl S, Hoeltl E, Toepker M, Lambers C, Mitterbauer A, Kortuem B, Zimmermann M, Moser B, Bekos C et al (2012) Increased serum levels of HSP27 as a marker for incipient chronic obstructive pulmonary disease in young smokers. Respiration 83(5): 391–399

    CAS  Google Scholar 

  142. Hacker S, Lambers C, Hoetzenecker K, Pollreisz A, Aigner C, Lichtenauer M, Mangold A, Niederpold T, Zimmermann M, Taghavi S et al (2009) Elevated HSP27, HSP70 and HSP90 alpha in chronic obstructive pulmonary disease: markers for immune activation and tissue destruction. Clin Lab 55(1–2):31–40

    PubMed  CAS  Google Scholar 

  143. Cappello F, Caramori G, Campanella C, Vicari C, Gnemmi I, Zanini A, Spanevello A, Capelli A, Rocca GL, Anzalone R et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One 6(11):e28200

    PubMed  CAS  Google Scholar 

  144. Xie J, Zhao J, Xiao C, Xu Y, Yang S, Ni W (2010) Reduced heat shock protein 70 in airway smooth muscle in patients with chronic obstructive pulmonary disease. Exp Lung Res 36(4):219–226

    PubMed  CAS  Google Scholar 

  145. Gal K, Cseh A, Szalay B, Rusai K, Vannay A, Lukacsovits J, Heemann U, Szabo AJ, Losonczy G, Tamasi L et al (2011) Effect of cigarette smoke and dexamethasone on Hsp72 system of alveolar epithelial cells. Cell Stress Chaperones 16(4):369–378

    PubMed  CAS  Google Scholar 

  146. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162(6):3212–3219

    PubMed  CAS  Google Scholar 

  147. Dick CA, Dennekamp M, Howarth S, Cherrie JW, Seaton A, Donaldson K, Stone V (2001) Stimulation of IL-8 release from epithelial cells by gas cooker PM(10): a pilot study. Occup Environ Med 58(3):208–210

    PubMed  CAS  Google Scholar 

  148. Li CJ, Ning W, Matthay MA, Feghali-Bostwick CA, Choi AM (2007) MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production. Am J Physiol Lung Cell Mol Physiol 292(5):L1297–L1303

    PubMed  CAS  Google Scholar 

  149. Doz E, Noulin N, Boichot E, Guenon I, Fick L, Le Bert M, Lagente V, Ryffel B, Schnyder B, Quesniaux VF et al (2008) Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol 180(2):1169–1178

    PubMed  CAS  Google Scholar 

  150. Yamashita M, Kimura M, Kubo M, Shimizu C, Tada T, Perlmutter RM, Nakayama T (1999) T cell antigen receptor-mediated activation of the Ras/mitogen-activated protein kinase pathway controls interleukin 4 receptor function and type-2 helper t cell differentiation. Proc Natl Acad Sci USA 96(3):1024–1029

    PubMed  CAS  Google Scholar 

  151. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282(5396):2092–2095

    PubMed  CAS  Google Scholar 

  152. Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romanic AM, Adams JL, Hay DW, Griswold DE (2000) SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 279(5):L895–L902

    PubMed  CAS  Google Scholar 

  153. Milligan SA, Owens MW, Grisham MB (1998) Differential regulation of extracellular signal-regulated kinase and nuclear factor-kappa B signal transduction pathways by hydrogen peroxide and tumor necrosis factor. Arch Biochem Biophys 352(2):255–262

    PubMed  CAS  Google Scholar 

  154. Jope RS, Zhang L, Song L (2000) Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys 376(2):365–370

    PubMed  CAS  Google Scholar 

  155. Lee K, Esselman WJ (2002) Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33(8):1121–1132

    PubMed  CAS  Google Scholar 

  156. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19(56):6550–6565

    PubMed  CAS  Google Scholar 

  157. Walters MJ, Paul-Clark MJ, McMaster SK, Ito K, Adcock IM, Mitchell JA (2005) Cigarette smoke activates human monocytes by an oxidant-AP-1 signaling pathway: implications for steroid resistance. Mol Pharmacol 68(5):1343–1353

    PubMed  CAS  Google Scholar 

  158. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661

    PubMed  CAS  Google Scholar 

  159. Rahman A, Fazal F (2011) Blocking NF-kappaB: an inflammatory issue. Proc Am Thorac Soc 8(6):497–503

    PubMed  CAS  Google Scholar 

  160. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res 21(1):146–158

    PubMed  CAS  Google Scholar 

  161. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S (1995) I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 80(4): 573–582

    PubMed  CAS  Google Scholar 

  162. Whiteside ST, Epinat JC, Rice NR, Israel A (1997) I kappa B epsilon, a novel member of the I kappa B family, controls RelA and cRel NF-kappa B activity. EMBO J 16(6):1413–1426

    PubMed  CAS  Google Scholar 

  163. Zabel U, Baeuerle PA (1990) Purified human I kappa B can rapidly dissociate the complex of the NF-kappa B transcription factor with its cognate DNA. Cell 61(2):255–265

    PubMed  CAS  Google Scholar 

  164. Pahl HL (1999) Activators and target genes of Rel/NF-kappab transcription factors. Oncogene 18(49):6853–6866

    PubMed  CAS  Google Scholar 

  165. Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60(11):1665–1676

    PubMed  CAS  Google Scholar 

  166. Poynter ME, Irvin CG, Janssen-Heininger YM (2003) A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. J Immunol 170(12):6257–6265

    PubMed  CAS  Google Scholar 

  167. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    PubMed  CAS  Google Scholar 

  168. True AL, Rahman A, Malik AB (2000) Activation of NF-kappab induced by H(2)O(2) and TNF-alpha and its effects on ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 279(2):L302–L311

    PubMed  CAS  Google Scholar 

  169. Vollgraf U, Wegner M, Richter-Landsberg C (1999) Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes. J Neurochem 73(6):2501–2509

    PubMed  CAS  Google Scholar 

  170. Yang H, Magilnick N, Lee C, Kalmaz D, Ou X, Chan JY, Lu SC (2005) Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-kappaB and AP-1. Mol Cell Biol 25(14):5933–5946

    PubMed  CAS  Google Scholar 

  171. Ahn KS, Aggarwal BB (2005) Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056:218–233

    PubMed  CAS  Google Scholar 

  172. Anwar AA, Li FY, Leake DS, Ishii T, Mann GE, Siow RC (2005) Induction of heme oxygenase 1 by moderately oxidized low-density lipoproteins in human vascular smooth muscle cells: role of mitogen-activated protein kinases and Nrf2. Free Radic Biol Med 39(2): 227–236

    PubMed  CAS  Google Scholar 

  173. Carayol N, Chen J, Yang F, Jin T, Jin L, States D, Wang CY (2006) A dominant function of IKK/NF-kappaB signaling in global lipopolysaccharide-induced gene expression. J Biol Chem 281(41):31142–31151

    PubMed  CAS  Google Scholar 

  174. Rushworth SA, Chen XL, Mackman N, Ogborne RM, O’Connell MA (2005) Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase C. J Immunol 175(7):4408–4415

    PubMed  CAS  Google Scholar 

  175. Yasumoto K, Okamoto S, Mukaida N, Murakami S, Mai M, Matsushima K (1992) Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J Biol Chem 267(31):22506–22511

    PubMed  CAS  Google Scholar 

  176. Nicholson WJ, Slight J, Donaldson K (1996) Inhibition of the transcription factors NF-kappa B and AP-1 underlies loss of cytokine gene expression in rat alveolar macrophages treated with a diffusible product from the spores of aspergillus fumigatus. Am J Respir Cell Mol Biol 15(1):88–96

    PubMed  CAS  Google Scholar 

  177. Zhou L, Tan A, Iasvovskaia S, Li J, Lin A, Hershenson MB (2003) Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells. Am J Respir Cell Mol Biol 28(6): 762–769

    PubMed  CAS  Google Scholar 

  178. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H et al (1994) Point mutations affecting the tyrosine kinase domain of the ret proto-oncogene in hirschsprung’s disease. Nature 367(6461):377–378

    PubMed  CAS  Google Scholar 

  179. Gruda MC, Kovary K, Metz R, Bravo R (1994) Regulation of Fra-1 and Fra-2 phosphorylation differs during the cell cycle of fibroblasts and phosphorylation in vitro by MAP kinase affects DNA binding activity. Oncogene 9(9):2537–2547

    PubMed  CAS  Google Scholar 

  180. Cavigelli M, Dolfi F, Claret FX, Karin M (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J 14(23):5957–5964

    PubMed  CAS  Google Scholar 

  181. Hill CS, Wynne J, Treisman R (1994) Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. EMBO J 13(22):5421–5432

    PubMed  CAS  Google Scholar 

  182. Iles KE, Dickinson DA, Watanabe N, Iwamoto T, Forman HJ (2002) AP-1 activation through endogenous H(2)O(2) generation by alveolar macrophages. Free Radic Biol Med 32(12): 1304–1313

    PubMed  CAS  Google Scholar 

  183. Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25(3):552–563

    PubMed  CAS  Google Scholar 

  184. Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293(5535):1653–1657

    CAS  Google Scholar 

  185. Tomita K, Barnes PJ, Adcock IM (2003) The effect of oxidative stress on histone acetylation and IL-8 release. Biochem Biophys Res Commun 301(2):572–577

    PubMed  CAS  Google Scholar 

  186. Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, Rahman I (2004) Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 18(15):1897–1899

    PubMed  CAS  Google Scholar 

  187. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM (2004) Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 315(1):240–245

    PubMed  CAS  Google Scholar 

  188. Rahman I, Marwick J, Kirkham P (2004) Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 68(6):1255–1267

    PubMed  CAS  Google Scholar 

  189. Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I (2004) Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 31(6):633–642

    PubMed  CAS  Google Scholar 

  190. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    PubMed  CAS  Google Scholar 

  191. Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86(4):1133–1149

    PubMed  CAS  Google Scholar 

  192. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  193. Gorlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8(9–10):1391–1418

    PubMed  Google Scholar 

  194. Hung CC, Ichimura T, Stevens JL, Bonventre JV (2003) Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J Biol Chem 278(31):29317–29326

    PubMed  CAS  Google Scholar 

  195. Liu H, Miller E, van de Water B, Stevens JL (1998) Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J Biol Chem 273(21):12858–12862

    PubMed  CAS  Google Scholar 

  196. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454(7203):455–462

    PubMed  CAS  Google Scholar 

  197. Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S (2008) Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 38(5):541–550

    PubMed  CAS  Google Scholar 

  198. Min T, Bodas M, Mazur S, Vij N (2011) Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med (Berl) 89(6):577–593

    CAS  Google Scholar 

  199. Tagawa Y, Hiramatsu N, Kato H, Sakoh T, Nakajima S, Hayakawa K, Saito Y, Johno H, Takahashi S, Gu L et al (2011) Induction of CCAAT/enhancer-binding protein-homologous protein by cigarette smoke through the superoxide anion-triggered PERK-eIF2alpha pathway. Toxicology 287(1–3):105–112

    PubMed  CAS  Google Scholar 

  200. Yang YM, Liu GT (2004) Damaging effect of cigarette smoke extract on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed Environ Sci 17(2):121–134

    PubMed  Google Scholar 

  201. Liu Q, Xu WG, Luo Y, Han FF, Yao XH, Yang TY, Zhang Y, Pi WF, Guo XJ (2011) Cigarette smoke-induced skeletal muscle atrophy is associated with up-regulation of USP-19 via p38 and ERK MAPKs. J Cell Biochem 112(9):2307–2316

    PubMed  CAS  Google Scholar 

  202. Hengstermann A, Muller T (2008) Endoplasmic reticulum stress induced by aqueous extracts of cigarette smoke in 3T3 cells activates the unfolded-protein-response-dependent perk pathway of cell survival. Free Radic Biol Med 44(6):1097–1107

    PubMed  CAS  Google Scholar 

  203. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP (2008) Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 8:229

    PubMed  Google Scholar 

  204. van der Vlies D, Pap EH, Post JA, Celis JE, Wirtz KW (2002) Endoplasmic reticulum resident proteins of normal human dermal fibroblasts are the major targets for oxidative stress induced by hydrogen peroxide. Biochem J 366(Pt 3):825–830

    PubMed  Google Scholar 

  205. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164(3):341–346

    PubMed  CAS  Google Scholar 

  206. Tu BP, Weissman JS (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10(5):983–994

    PubMed  CAS  Google Scholar 

  207. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    PubMed  CAS  Google Scholar 

  208. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    PubMed  CAS  Google Scholar 

  209. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18(6):716–731

    PubMed  CAS  Google Scholar 

  210. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    PubMed  CAS  Google Scholar 

  211. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26(8):3071–3084

    PubMed  CAS  Google Scholar 

  212. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2): 239–252

    PubMed  CAS  Google Scholar 

  213. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24(23):10161–10168

    PubMed  CAS  Google Scholar 

  214. Tabas I (2011) Pulling down the plug on atherosclerosis: finding the culprit in your heart. Nat Med 17(7):791–793

    PubMed  CAS  Google Scholar 

  215. Tagawa Y, Hiramatsu N, Kasai A, Hayakawa K, Okamura M, Yao J, Kitamura M (2008) Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic Biol Med 45(1):50–59

    PubMed  CAS  Google Scholar 

  216. Jung EJ, Avliyakulov NK, Boontheung P, Loo JA, Nel AE (2007) Pro-oxidative dep chemicals induce heat shock proteins and an unfolding protein response in a bronchial epithelial cell line as determined by dige analysis. Proteomics 7(21):3906–3918

    PubMed  CAS  Google Scholar 

  217. Woo CW, Kutzler L, Kimball SR, Tabas I (2012) Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat Cell Biol 14(2):192–200

    PubMed  CAS  Google Scholar 

  218. Vij N, Amoako MO, Mazur S, Zeitlin PL (2008) CHOP transcription factor mediates IL-8 signaling in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 38(2):176–184

    PubMed  CAS  Google Scholar 

  219. Vij N, Fang S, Zeitlin PL (2006) Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 281(25):17369–17378

    PubMed  CAS  Google Scholar 

  220. Woischnik M, Sparr C, Kern S, Thurm T, Hector A, Hartl D, Liebisch G, Mulugeta S, Beers MF, Schmitz G et al (2010) A non-brichos surfactant protein c mutation disrupts epithelial cell function and intercellular signaling. BMC Cell Biol 11:88

    PubMed  Google Scholar 

  221. Neurath MF, Finotto S, Glimcher LH (2002) The role of Th1/Th2 polarization in mucosal immunity. Nat Med 8(6):567–573

    PubMed  CAS  Google Scholar 

  222. Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ, Enelow R, Elias JA (2008) Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 118(8):2771–2784

    PubMed  CAS  Google Scholar 

  223. Malhotra D, Thimmulappa R, Vij N, Navas-Acien A, Sussan T, Merali S, Zhang L, Kelsen SG, Myers A, Wise R et al (2009) Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 180(12):1196–1207

    PubMed  CAS  Google Scholar 

  224. Morse D, Choi AM (2005) Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med 172(6):660–670

    PubMed  Google Scholar 

  225. Burrows B, Knudson RJ, Cline MG, Lebowitz MD (1977) Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis 115(2):195–205

    PubMed  CAS  Google Scholar 

  226. Rennard SI, Vestbo J (2006) Copd: the dangerous underestimate of 15%. Lancet 367(9518): 1216–1219

    PubMed  Google Scholar 

  227. Fletcher CM (1976) The natural history of chronic bronchitis and emphysema: an eight-year study of early chornic obstructive lung disease in working men in London. Oxiford University Press, New York

    Google Scholar 

  228. Hackett NR, Heguy A, Harvey BG, O’Connor TP, Luettich K, Flieder DB, Kaplan R, Crystal RG (2003) Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol 29(3 Pt 1):331–343

    PubMed  CAS  Google Scholar 

  229. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS (2004) Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA 101(27):10143–10148

    PubMed  CAS  Google Scholar 

  230. Dombroski BA, Nayak RR, Ewens KG, Ankener W, Cheung VG, Spielman RS (2010) Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am J Hum Genet 86(5):719–729

    PubMed  CAS  Google Scholar 

  231. Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25(4):406–409

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Kelsen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Song, C., Kelsen, S.G. (2013). The Relationship Between Oxidative Stress Responses and Lung Inflammation with Cigarette Smoking. In: Rogers, T., Criner, G., Cornwell, W. (eds) Smoking and Lung Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7351-0_5

Download citation

Publish with us

Policies and ethics