Skip to main content

Immunopathology of COPD

  • Chapter
  • First Online:
  • 1202 Accesses

Abstract

This review focuses on new aspects of the pathogenic autoimmune mechanisms of COPD unveiled in recent years. We emphasize the importance of lung inflammation, innate and adaptive immune responses, as well as an autoimmune component in lung tissue destruction and repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176(6):532–555

    PubMed  Google Scholar 

  2. Filley GF (1967) Emphysema and chronic bronchitis: clinical manifestations and their physiologic significance. Med Clin North Am 51(2):283–292

    PubMed  CAS  Google Scholar 

  3. Niewoehner DE (1988) Cigarette smoking, lung inflammation, and the development of emphysema. J Lab Clin Med 111(1):15

    PubMed  CAS  Google Scholar 

  4. Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 4:435–459

    PubMed  CAS  Google Scholar 

  5. Doherty DE, Briggs DD Jr (2004) Chronic obstructive pulmonary disease: epidemiology, pathogenesis, disease course, and prognosis. Clin Cornerstone 2:S5–16

    PubMed  Google Scholar 

  6. Mehta H, Nazzal K, Sadikot RT (2008) Cigarette smoking and innate immunity. Inflamm Res 57(11):497

    PubMed  CAS  Google Scholar 

  7. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350(26):2645

    PubMed  CAS  Google Scholar 

  8. Snider GL, Kleinerman J, Thurlbeck WM, Bengali ZH (1985) The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 132(1):182–185

    Google Scholar 

  9. Laennec RT (1819) De auscultation mediate, on traite du diagnostic del maladies des poumons et du coeur. Brosson et Chaude, Paris

    Google Scholar 

  10. Fletcher C, Peto R (1977) The natural history of chronic airflow obstruction. Br Med J 1(6077):1645

    PubMed  CAS  Google Scholar 

  11. Abbey DE, Burchette RJ, Knutsen SF, McDonnell WF, Lebowitz MD, Enright PL (1998) Long-term particulate and other air pollutants and lung function in nonsmokers. Am J Respir Crit Care Med 158(1):289–298

    PubMed  CAS  Google Scholar 

  12. Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicelli F, Duffin R et al (2000) Activation of NF-kappaB by PM(10) occurs via an iron-mediated mechanism in the absence of IkappaB degradation. Toxicol Appl Pharmacol 166(2):101–110

    PubMed  CAS  Google Scholar 

  13. Karakatsani A, Andreadaki S, Katsouyanni K, Dimitroulis I, Trichopoulos D, Benetou V et al (2003) Air pollution in relation to manifestations of chronic pulmonary disease: a nested case–control study in Athens, Greece. Eur J Epidemiol 18(1):45–53

    PubMed  CAS  Google Scholar 

  14. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3):e1000421

    PubMed  Google Scholar 

  15. Joos L, Pare PD, Sandford AJ (2002) Genetic risk factors. In: Voelkel NF, MacNee W (eds) Chronic obstructive lung diseases. BC Decker Inc., London/Hamilton

    Google Scholar 

  16. Todd JL, Goldstein DB, Ge D, Christie J, Palmer SM (2011) The state of genome-wide association studies in pulmonary disease: a new perspective. Am J Respir Crit Care Med 184(8):873–880

    PubMed  CAS  Google Scholar 

  17. Nakamura H (2011) Genetics of COPD. Allergol Int 60(3):253–258

    Google Scholar 

  18. Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W et al (2011) Genome-wide association study of smoking behaviours in patients with COPD. Thorax

    Google Scholar 

  19. Castaldi PJ, Cho MH, Litonjua AA, Bakke P, Gulsvik A, Lomas DA et al (2011) The association of genome-wide significant spirometric loci with COPD susceptibility. Am J Respir Cell Mol Biol

    Google Scholar 

  20. Silverman EK, Weiss ST, Drazen JM, Chapman HA, Carey V, Campbell EJ et al (2000) Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162(6):2152–2158

    PubMed  CAS  Google Scholar 

  21. Kim WD, Eidelman DH, Izquierdo JL, Ghezzo H, Saetta MP, Cosio MG (1991) Centrilobular and panlobular emphysema in smokers. Two distinct morphologic and functional entities. Am Rev Respir Dis 144(6):1385–1390

    PubMed  CAS  Google Scholar 

  22. Anderson D, Macnee W (2009) Targeted treatment in COPD: a multi-system approach for a multi-system disease. Int J Chron Obstruct Pulmon Dis 4:321–335

    PubMed  CAS  Google Scholar 

  23. Agusti A, MacNee W, Donaldson K, Cosio M (2003) Hypothesis: does COPD have an autoimmune component? Thorax 58(10):832

    PubMed  CAS  Google Scholar 

  24. Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22(4):672

    PubMed  CAS  Google Scholar 

  25. Churg A, Wright JL (2005) Proteases and emphysema. Curr Opin Pulm Med 11(2):153

    PubMed  Google Scholar 

  26. Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31(6):1334–1356

    PubMed  CAS  Google Scholar 

  27. Churg A, Cosio M, Wright JL (2008) Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol 294(4):L612

    PubMed  CAS  Google Scholar 

  28. Kardos P, Keenan J (2006) Tackling COPD: a multicomponent disease driven by inflammation. MedGenMed 8(3):54

    PubMed  Google Scholar 

  29. Burrows B, Halonen M, Barbee RA, Lebowitz MD (1981) The relationship of serum immunoglobulin E to cigarette smoking. Am Rev Respir Dis 124(5):523

    PubMed  CAS  Google Scholar 

  30. Hurd S, Pauwels R (2002) Global initiative for chronic obstructive lung diseases (GOLD). Pulm Pharmacol Ther 15(4):353

    PubMed  CAS  Google Scholar 

  31. Scichilone N, Battaglia S, La Sala A, Bellia V (2006) Clinical implications of airway hyperresponsiveness in COPD. Int J Chron Obstruct Pulmon Dis 1(1):49–60

    PubMed  Google Scholar 

  32. Orie NG (1961) Correlations of emphysema and asthmatic constitution. Acta Allergol 16:407–409

    PubMed  CAS  Google Scholar 

  33. Rijcken B, Schouten JP, Xu X, Rosner B, Weiss ST (1995) Airway hyperresponsiveness to histamine associated with accelerated decline in FEV1. Am J Respir Crit Care Med 151(5):1377–1382

    PubMed  CAS  Google Scholar 

  34. Celli BR, MacNee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23(6):932–946

    PubMed  CAS  Google Scholar 

  35. Postma DS, Boezen HM (2004) Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest 126(2 Suppl):96S–104S, discussion 59S–61S

    PubMed  Google Scholar 

  36. Barnes PJ, Cosio MG (2004) Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med 1(1):e20

    PubMed  Google Scholar 

  37. van der Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M et al (2006) Cigarette smoke-induced emphysema: a role for the B cell? Am J Respir Crit Care Med 173(7):751

    PubMed  Google Scholar 

  38. Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360(23):2445–2454

    PubMed  CAS  Google Scholar 

  39. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E et al (2008) Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(2):156

    PubMed  Google Scholar 

  40. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S et al (2007) Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 13(5):567

    PubMed  CAS  Google Scholar 

  41. Taraseviciene-Stewart L, Kraskauskiene V, Burns N, Voelkel NF (2008) Presence of anti-endothelial cell antibodies in patients with COPD. Am J Respir Crit Care Med 177:A658

    Google Scholar 

  42. Leidinger P, Keller A, Heisel S, Ludwig N, Rheinheimer S, Klein V et al (2009) Novel autoantigens immunogenic in COPD patients. Respir Res 10:20

    PubMed  Google Scholar 

  43. Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–262

    PubMed  CAS  Google Scholar 

  44. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    PubMed  CAS  Google Scholar 

  45. Galgani M, Fabozzi I, Perna F, Bruzzese D, Bellofiore B, Calabrese C et al (2010) Imbalance of circulating dendritic cell subsets in chronic obstructive pulmonary disease. Clin Immunol 137(1):102–110

    PubMed  CAS  Google Scholar 

  46. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD (1999) Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 29(9):2769–2778

    PubMed  CAS  Google Scholar 

  47. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520

    PubMed  CAS  Google Scholar 

  48. Vermaelen K, Pauwels R (2004) Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry A 61(2):170–177

    PubMed  Google Scholar 

  49. GeurtsvanKessel CH, Lambrecht BN (2008) Division of labor between dendritic cell subsets of the lung. Mucosal Immunol 1(6):442–450

    PubMed  CAS  Google Scholar 

  50. Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR (2006) A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176(4):2161–2172

    PubMed  CAS  Google Scholar 

  51. Jakubzick C, Helft J, Kaplan TJ, Randolph GJ (2008) Optimization of methods to study pulmonary dendritic cell migration reveals distinct capacities of DC subsets to acquire soluble versus particulate antigen. J Immunol Methods 337(2):121–131

    PubMed  CAS  Google Scholar 

  52. Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358

    PubMed  CAS  Google Scholar 

  53. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837

    PubMed  CAS  Google Scholar 

  54. Lou Y, Liu C, Kim GJ, Liu YJ, Hwu P, Wang G (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178(3):1534–1541

    PubMed  CAS  Google Scholar 

  55. Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA et al (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204(1):105–115

    PubMed  CAS  Google Scholar 

  56. Suda T, McCarthy K, Vu Q, McCormack J, Schneeberger EE (1998) Dendritic cell precursors are enriched in the vascular compartment of the lung. Am J Respir Cell Mol Biol 19(5):728–737

    PubMed  CAS  Google Scholar 

  57. Sertl K, Takemura T, Tschachler E, Ferrans VJ, Kaliner MA, Shevach EM (1986) Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med 163(2):436–451

    PubMed  CAS  Google Scholar 

  58. Desch AN, Randolph GJ, Murphy K, Gautier EL, Kedl RM, Lahoud MH et al (2011) CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J Exp Med 208(9):1789–1797

    PubMed  CAS  Google Scholar 

  59. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204

    PubMed  CAS  Google Scholar 

  60. Masten BJ, Olson GK, Tarleton CA, Rund C, Schuyler M, Mehran R et al (2006) Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol 177(11):7784–7793

    PubMed  CAS  Google Scholar 

  61. Tsoumakidou M, Bouloukaki I, Koutala H, Kouvidi K, Mitrouska I, Zakynthinos S et al (2009) Decreased sputum mature dendritic cells in healthy smokers and patients with chronic obstructive pulmonary disease. Int Arch Allergy Immunol 150(4):389–397

    PubMed  Google Scholar 

  62. Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE et al (2007) Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175(10):998–1005

    PubMed  CAS  Google Scholar 

  63. Freeman CM, Martinez FJ, Han MK, Ames TM, Chensue SW, Todt JC et al (2009) Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180(12):1179–1188

    PubMed  Google Scholar 

  64. Brusselle GG, Joos GF, Bracke KR (2011) New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378(9795):1015–1026

    PubMed  CAS  Google Scholar 

  65. Voelkel MA, Terry JL, Riches DWH, Wynes MW (2008) Macrophage involvement in chronic obstructive pulmonary disease. Chronic obstructive lung diseases 2. BC Decker Inc., Hamilton, pp 85–105

    Google Scholar 

  66. Prussin C, Metcalfe DD (2003) 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 111(2 Suppl):S486–S494

    PubMed  CAS  Google Scholar 

  67. Mortaz E, Folkerts G, Redegeld F (2011) Mast cells and COPD. Pulm Pharmacol Ther 24(4):367–372

    PubMed  CAS  Google Scholar 

  68. Brinkman GL (1968) The mast cell in normal human bronchus and lung. J Ultrastruct Res 23(1):115–123

    PubMed  CAS  Google Scholar 

  69. Lazaar AL, Plotnick MI, Kucich U, Crichton I, Lotfi S, Das SK et al (2002) Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol 169(2):1014–1020

    PubMed  CAS  Google Scholar 

  70. MacGlashan D Jr (2008) IgE receptor and signal transduction in mast cells and basophils. Curr Opin Immunol 20(6):717–723

    PubMed  CAS  Google Scholar 

  71. Kumar V, Sharma A (2010) Mast cells: emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol 48(1–3):14–25

    PubMed  CAS  Google Scholar 

  72. Garcia-Roman J, Ibarra-Sanchez A, Lamas M, Gonzalez Espinosa C (2010) VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells. Biochem Biophys Res Commun 401(2):262–267

    PubMed  CAS  Google Scholar 

  73. Aroni K, Voudouris S, Ioannidis E, Grapsa A, Kavantzas N, Patsouris E (2010) Increased angiogenesis and mast cells in the centre compared to the periphery of vitiligo lesions. Arch Dermatol Res 302(8):601–607

    PubMed  CAS  Google Scholar 

  74. Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin North Am 26(3):407–425

    PubMed  Google Scholar 

  75. Walter A, Walter S (1982) Mast cell density in isolated monkey lungs on exposure to cigarette smoke. Thorax 37(9):699–702

    PubMed  CAS  Google Scholar 

  76. Kalenderian R, Raju L, Roth W, Schwartz LB, Gruber B, Janoff A (1988) Elevated histamine and tryptase levels in smokers’ bronchoalveolar lavage fluid. Do lung mast cells contribute to smokers’ emphysema? Chest 94(1):119–123

    PubMed  CAS  Google Scholar 

  77. Mortaz E, Redegeld FA, Sarir H, Karimi K, Raats D, Nijkamp FP et al (2008) Cigarette smoke stimulates the production of chemokines in mast cells. J Leukoc Biol 83(3):575–580

    PubMed  CAS  Google Scholar 

  78. Wen Y, Reid DW, Zhang D, Ward C, Wood-Baker R, Walters EH (2010) Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD. Int J Chron Obstruct Pulmon Dis 5:327–334

    PubMed  Google Scholar 

  79. Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS (2010) Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(3):206–217

    PubMed  Google Scholar 

  80. He S, Aslam A, Gaca MD, He Y, Buckley MG, Hollenberg MD et al (2004) Inhibitors of tryptase as mast cell-stabilizing agents in the human airways: effects of tryptase and other agonists of proteinase-activated receptor 2 on histamine release. J Pharmacol Exp Ther 309(1):119–126

    PubMed  CAS  Google Scholar 

  81. White MC, McHowat J (2007) Protease activation of calcium-independent phospholipase A2 leads to neutrophil recruitment to coronary artery endothelial cells. Thromb Res 120(4):597–605

    PubMed  CAS  Google Scholar 

  82. Saetta M, Di Stefano A, Maestrelli P, Ferraresso A, Drigo R, Potena A et al (1993) Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 147(2):301–306

    PubMed  CAS  Google Scholar 

  83. Riise GC, Ahlstedt S, Larsson S, Enander I, Jones I, Larsson P et al (1995) Bronchial inflammation in chronic bronchitis assessed by measurement of cell products in bronchial lavage fluid. Thorax 50(4):360–365

    PubMed  CAS  Google Scholar 

  84. Hargreave FE (1999) Induced sputum for the investigation of airway inflammation: evidence for its clinical application. Can Respir J 6(2):169–174

    PubMed  CAS  Google Scholar 

  85. Rutgers SR, Postma DS, ten Hacken NH, Kauffman HF, van Der Mark TW, Koeter GH et al (2000) Ongoing airway inflammation in patients with COPD who do not currently smoke. Chest 117(5 Suppl 1):262S

    PubMed  Google Scholar 

  86. Lams BE, Sousa AR, Rees PJ, Lee TH (1998) Immunopathology of the small-airway submucosa in smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158(5 Pt 1):1518–1523

    PubMed  CAS  Google Scholar 

  87. D’Armiento JM, Scharf SM, Roth MD, Connett JE, Ghio A, Sternberg D et al (2009) Eosinophil and T cell markers predict functional decline in COPD patients. Respir Res 10:113

    PubMed  Google Scholar 

  88. Perng DW, Huang HY, Chen HM, Lee YC, Perng RP (2004) Characteristics of airway inflammation and bronchodilator reversibility in COPD: a potential guide to treatment. Chest 126(2):375–381

    PubMed  Google Scholar 

  89. Bocchino V, Bertorelli G, Bertrand CP, Ponath PD, Newman W, Franco C et al (2002) Eotaxin and CCR3 are up-regulated in exacerbations of chronic bronchitis. Allergy 57(1):17–22

    PubMed  CAS  Google Scholar 

  90. Baraldo S, Turato G, Badin C, Bazzan E, Beghe B, Zuin R et al (2004) Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 59(4):308–312

    PubMed  CAS  Google Scholar 

  91. Hunninghake GW, Crystal RG (1983) Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 128(5):833–838

    PubMed  CAS  Google Scholar 

  92. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277(5334):2002

    PubMed  CAS  Google Scholar 

  93. Ofulue AF, Ko M (1999) Effects of depletion of neutrophils or macrophages on development of cigarette smoke-induced emphysema. Am J Physiol 277(1 Pt 1):L97

    PubMed  CAS  Google Scholar 

  94. Shapiro SD (1999) The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(5 Pt 2):S29–S32

    PubMed  CAS  Google Scholar 

  95. Churg A, Zay K, Shay S, Xie C, Shapiro SD, Hendricks R et al (2002) Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol 27(3):368–374

    PubMed  CAS  Google Scholar 

  96. Ofulue AF, Ko M, Abboud RT (1998) Time course of neutrophil and macrophage elastinolytic activities in cigarette smoke-induced emphysema. Am J Physiol 275(6 Pt 1): L1134–L1144

    PubMed  CAS  Google Scholar 

  97. Barnes PJ (2004) Alveolar macrophages as orchestrators of COPD. COPD 1(1):59–70

    PubMed  Google Scholar 

  98. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    PubMed  CAS  Google Scholar 

  99. Thompson AB, Daughton D, Robbins RA, Ghafouri MA, Oehlerking M, Rennard SI (1989) Intraluminal airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis 140(6):1527–1537

    PubMed  CAS  Google Scholar 

  100. Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J et al (2002) Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26(5):602–609

    PubMed  CAS  Google Scholar 

  101. Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM et al (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352(19): 1967–1976

    PubMed  CAS  Google Scholar 

  102. Mizuno S, Yasuo M, Bogaard HJ, Kraskauskas D, Natarajan R, Voelkel NF (2010) Inhibition of histone deacetylase causes emphysema. Am J Physiol Lung Cell Mol Physiol

    Google Scholar 

  103. Richens TR, Linderman DJ, Horstmann SA, Lambert C, Xiao YQ, Keith RL et al (2009) Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am J Respir Crit Care Med 179(11):1011–1021

    PubMed  CAS  Google Scholar 

  104. Petrusca DN, Gu Y, Adamowicz JJ, Rush NI, Hubbard WC, Smith PA et al (2010) Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J Biol Chem 285(51):40322–40332

    PubMed  CAS  Google Scholar 

  105. Borchers MT, Wesselkamper SC, Harris NL, Deshmukh H, Beckman E, Vitucci M et al (2007) CD8+ T cells contribute to macrophage accumulation and airspace enlargement following repeated irritant exposure. Exp Mol Pathol 83(3):301–310

    PubMed  CAS  Google Scholar 

  106. Motz GT, Eppert BL, Sun G, Wesselkamper SC, Linke MJ, Deka R et al (2008) Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol 181(11):8036–8043

    PubMed  CAS  Google Scholar 

  107. Sullivan AK, Simonian PL, Falta MT, Mitchell JD, Cosgrove GP, Brown KK et al (2005) Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med 172:590–596

    PubMed  Google Scholar 

  108. Maeno T, Houghton AM, Quintero PA, Grumelli S, Owen CA, Shapiro SD (2007) CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 178(12):8090

    PubMed  CAS  Google Scholar 

  109. Mortaz E, Kraneveld AD, Smit JJ, Kool M, Lambrecht BN, Kunkel SL et al (2009) Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. PLoS One 4(3):e4946

    PubMed  Google Scholar 

  110. Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev Immunol 2(5):372

    PubMed  CAS  Google Scholar 

  111. Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Moore M, Sullivan A, Nicolls MR et al (2005) An animal model of autoimmune emphysema. Am J Respir Crit Care Med 171(7):734

    PubMed  Google Scholar 

  112. Pons J, Sauleda J, Ferrer JM, Barcelo B, Fuster A, Regueiro V et al (2005) Blunted gamma delta T-lymphocyte response in chronic obstructive pulmonary disease. Eur Respir J 25(3):441

    PubMed  CAS  Google Scholar 

  113. Gosman MM, Willemse BW, Jansen DF, Lapperre TS, van Schadewijk A, Hiemstra PS et al (2006) Increased number of B-cells in bronchial biopsies in COPD. Eur Respir J 27(1):60–64

    PubMed  CAS  Google Scholar 

  114. Brusselle GG, Demoor T, Bracke KR, Brandsma CA, Timens W (2009) Lymphoid follicles in (very) severe COPD: beneficial or harmful? Eur Respir J 34(1):219–230

    PubMed  CAS  Google Scholar 

  115. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86(2):515–581

    PubMed  CAS  Google Scholar 

  116. Kratzer A, Chu HW, Salys J, Moumen Z, Leberl M, Bowler R, Cool C, Zamora M, Taraseviciene-Stewart L. (2013) Endothelial cell adhesion molecule CD146: implications for its role in the pathogenesis of COPD. J Pathol. 2013, Epub May 3

    Google Scholar 

  117. Kratzer A, Salys J, Nold C, Cool C, Zamora M, Bowler R, Koczulla AR, Janciauskiene S, Edwards M, Dinarello C, Taraseviciene-Stewart L. (2013) Interleukin 18 and endothelial cell death in second hand cigarette smoke-induced emphysema. Am J Respir Cell Mol Biol. 2013 Epub Feb 9

    Google Scholar 

  118. Mountain DJ, Singh M, Singh K (2008) Interleukin-1beta-mediated inhibition of the processes of angiogenesis in cardiac microvascular endothelial cells. Life Sci 82(25–26):1224–1230

    PubMed  CAS  Google Scholar 

  119. Wang JG, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JP et al (2011) Monocytic microparticles activate endothelial cells in an IL-1beta-dependent manner. Blood 118(8):2366–2374

    PubMed  CAS  Google Scholar 

  120. Bry K, Whitsett JA, Lappalainen U (2007) IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36(1):32–42

    PubMed  CAS  Google Scholar 

  121. Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005) Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32(4):311–318

    PubMed  CAS  Google Scholar 

  122. Ma B, Blackburn MR, Lee CG, Homer RJ, Liu W, Flavell RA et al (2006) Adenosine metabolism and murine strain-specific IL-4-induced inflammation, emphysema, and fibrosis. J Clin Invest 116(5):1274–1283

    PubMed  CAS  Google Scholar 

  123. Kuhn C 3rd, Homer RJ, Zhu Z, Ward N, Flavell RA, Geba GP et al (2000) Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J Respir Cell Mol Biol 22(3):289–295

    PubMed  CAS  Google Scholar 

  124. Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr et al (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 106(9):1081

    PubMed  CAS  Google Scholar 

  125. Hoshino T, Kato S, Oka N, Imaoka H, Kinoshita T, Takei S et al (2007) Pulmonary inflammation and emphysema: role of the cytokines IL-18 and IL-13. Am J Respir Crit Care Med 176(1):49–62

    PubMed  CAS  Google Scholar 

  126. Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA Jr et al (2000) Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 192(11):1587

    PubMed  CAS  Google Scholar 

  127. Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A et al (2001) Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 280(1):L39–L49

    PubMed  CAS  Google Scholar 

  128. Tang K, Rossiter HB, Wagner PD, Breen EC (2004) Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 97(4):1559

    PubMed  CAS  Google Scholar 

  129. Nakanishi K, Takeda Y, Tetsumoto S, Iwasaki T, Tsujino K, Kuhara H et al (2011) Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy. Am J Respir Crit Care Med 183(9):1164–1175

    PubMed  CAS  Google Scholar 

  130. Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF et al (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972–5977

    PubMed  CAS  Google Scholar 

  131. Zhang X, Shan P, Jiang G, Cohn L, Lee PJ (2006) Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 116(11):3050–3059

    PubMed  CAS  Google Scholar 

  132. Leco KJ, Waterhouse P, Sanchez OH, Gowing KL, Poole AR, Wakeham A et al (2001) Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 108(6):817–829

    PubMed  CAS  Google Scholar 

  133. Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B (2006) Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 20(6):720–722

    PubMed  CAS  Google Scholar 

  134. Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G et al (2003) Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 422(6928):169–173

    PubMed  CAS  Google Scholar 

  135. Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M et al (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 173(3):2099–2108

    PubMed  CAS  Google Scholar 

  136. Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF et al (2005) Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 288(4):L683–L691

    PubMed  CAS  Google Scholar 

  137. Funada Y, Nishimura Y, Yokoyama M (2004) Imbalance of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 is associated with pulmonary emphysema in Klotho mice. Kobe J Med Sci 50(3–4):59–67

    PubMed  CAS  Google Scholar 

  138. Suga T, Kurabayashi M, Sando Y, Ohyama Y, Maeno T, Maeno Y et al (2000) Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am J Respir Cell Mol Biol 22(1):26–33

    PubMed  CAS  Google Scholar 

  139. Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL (2004) Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 170(5):492

    PubMed  Google Scholar 

  140. D’Hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF et al (2006) Role of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J 28(1):102–112

    PubMed  Google Scholar 

  141. Kang MJ, Homer RJ, Gallo A, Lee CG, Crothers KA, Cho SJ et al (2007) IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J Immunol 178(3):1948–1959

    PubMed  CAS  Google Scholar 

  142. Bracke KR, D’Hulst AI, Maes T, Moerloose KB, Demedts IK, Lebecque S et al (2006) Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J Immunol 177(7):4350–4359

    PubMed  CAS  Google Scholar 

  143. Bracke KR, D’Hulst AI, Maes T, Demedts IK, Moerloose KB, Kuziel WA et al (2007) Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin Exp Allergy 37(10):1467–1479

    PubMed  CAS  Google Scholar 

  144. Matsuzaki Y, Xu Y, Ikegami M, Besnard V, Park KS, Hull WM et al (2006) Stat3 is required for cytoprotection of the respiratory epithelium during adenoviral infection. J Immunol 177(1):527–537

    PubMed  CAS  Google Scholar 

  145. Boutten A, Bonay M, Laribe S, Leseche G, Castier Y, Lecon-Malas V et al (2004) Decreased expression of interleukin 13 in human lung emphysema. Thorax 59(10):850–854

    PubMed  CAS  Google Scholar 

  146. Ma B, Kang MJ, Lee CG, Chapoval S, Liu W, Chen Q et al (2005) Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest 115(12):3460

    PubMed  CAS  Google Scholar 

  147. Imaoka H, Hoshino T, Takei S, Kinoshita T, Okamoto M, Kawayama T et al (2008) Interleukin-18 production and pulmonary function in COPD. Eur Respir J 31(2):287–297

    PubMed  CAS  Google Scholar 

  148. Anthonisen NR, Connett JE, Murray RP (2002) Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med 166(5):675–679

    PubMed  Google Scholar 

  149. Hogg JC (2001) Chronic obstructive pulmonary disease: an overview of pathology and pathogenesis. Novartis Found Symp 234:4–19, discussion −26

    PubMed  CAS  Google Scholar 

  150. Michaeli D, Fudenberg HH (1974) Antibodies to collagen in patients with emphysema. Clin Immunol Immunopathol 3(2):187–192

    PubMed  CAS  Google Scholar 

  151. Brandsma CA, Kerstjens HA, Geerlings M, Kerkhof M, Hylkema MN, Postma DS et al (2011) The search for autoantibodies against elastin, collagen and decorin in COPD. Eur Respir J 37(5):1289–1292

    PubMed  CAS  Google Scholar 

  152. Bonarius HP, Brandsma CA, Kerstjens HA, Koerts JA, Kerkhof M, Nizankowska-Mogilnicka E et al (2011) Antinuclear autoantibodies are more prevalent in COPD in association with low body mass index but not with smoking history. Thorax 66(2):101–107

    PubMed  CAS  Google Scholar 

  153. Koethe SM, Kuhnmuench JR, Becker CG (2000) Neutrophil priming by cigarette smoke condensate and a tobacco anti-idiotypic antibody. Am J Pathol 157(5):1735

    PubMed  CAS  Google Scholar 

  154. Greene CM, Low TB, O’Neill SJ, McElvaney NG (2010) Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease. Am J Respir Crit Care Med 181(1):31–35

    PubMed  Google Scholar 

  155. Cottin V, Fabien N, Khouatra C, Moreira A, Cordier JF (2009) Anti-elastin autoantibodies are not present in combined pulmonary fibrosis and emphysema. Eur Respir J 33(1): 219–221

    PubMed  CAS  Google Scholar 

  156. Wood AM, de Pablo P, Buckley CD, Ahmad A, Stockley RA (2011) Smoke exposure as a determinant of autoantibody titre in alpha-antitrypsin deficiency and COPD. Eur Respir J 37(1):32–38

    PubMed  CAS  Google Scholar 

  157. Motz GT, Eppert BL, Wesselkamper SC, Flury JL, Borchers MT (2010) Chronic cigarette smoke exposure generates pathogenic T cells capable of driving COPD-like disease in Rag2−/− mice. Am J Respir Crit Care Med 181(11):1223–1233

    PubMed  CAS  Google Scholar 

  158. Karayama M, Inui N, Suda T, Nakamura Y, Nakamura H, Chida K (2010) Antiendothelial cell antibodies in patients with COPD. Chest 138(6):1303–1308

    PubMed  Google Scholar 

  159. Plotz PH (2003) The autoantibody repertoire: searching for order. Nat Rev Immunol 3(1):73–78

    PubMed  CAS  Google Scholar 

  160. Naparstek Y, Plotz PH (1993) The role of autoantibodies in autoimmune disease. Annu Rev Immunol 11:79–104

    PubMed  CAS  Google Scholar 

  161. Taraseviciene-Stewart L, Kraskauskiene V, Burns N, Voelkel NF (2007) Anti-endothelial cell antibodies in patients with COPD. European Respiratory Society Annual Congress, Stockholm, 15–19 Sept 2007, p E496

    Google Scholar 

  162. Nana-Sinkam SP, Lee JD, Stearman R, Sakao S, Sotto-Santiago S, Voelkel NF et al (2006) Prostacyclin synthase in smoking-related lung disease. Proc Am Thorac Soc 3(6):517

    PubMed  Google Scholar 

  163. Taraseviciene-Stewart L, Voelkel NF (2008) Molecular pathogenesis of emphysema. J Clin Invest 118(2):394

    PubMed  CAS  Google Scholar 

  164. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7(1):53

    PubMed  Google Scholar 

  165. Hanaoka M, Nicolls MR, Fontenot AP, Kraskauskas D, Mack DG, Kratzer A et al (2010) Immunomodulatory strategies prevent the development of autoimmune emphysema. Respir Res 11:179

    PubMed  CAS  Google Scholar 

  166. Gordon C, Gudi K, Krause A, Sackrowitz R, Harvey BG, Strulovici-Barel Y et al (2011) Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med 184(2):224–232

    PubMed  Google Scholar 

  167. Chandra D, Sciurba FC, Gladwin MT (2011) Endothelial chronic destructive pulmonary disease (E-CDPD): is endothelial apoptosis a subphenotype or prequel to COPD? Am J Respir Crit Care Med 184(2):153–155

    PubMed  Google Scholar 

  168. Ma B, Dela Cruz CS, Hartl D, Kang MJ, Takyar S, Homer RJ et al (2011) RIG-like helicase innate immunity inhibits vascular endothelial growth factor tissue responses via a type I IFN-dependent mechanism. Am J Respir Crit Care Med 183(10):1322–1335

    PubMed  CAS  Google Scholar 

  169. Marwick JA, Stevenson CS, Giddings J, MacNee W, Butler K, Rahman I et al (2006) Cigarette smoke disrupts VEGF165-VEGFR-2 receptor signaling complex in rat lungs and patients with COPD: morphological impact of VEGFR-2 inhibition. Am J Physiol Lung Cell Mol Physiol 290(5):L897–L908

    PubMed  CAS  Google Scholar 

  170. Voelkel NF, Vandivier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290(2):L209–L221

    PubMed  CAS  Google Scholar 

  171. Voelkel NF (2008) Vascular endothelial growth factor and its role in emphysema and asthma. In: Voelkel NF, MacNee W (eds) Chronic obstructive lung diseases 2. BC Decker Inc., Hamilton, pp 77–83

    Google Scholar 

  172. Stevenson CS, Docx C, Webster R, Battram C, Hynx D, Giddings J et al (2007) Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol 293(5):L1183–L1193

    PubMed  CAS  Google Scholar 

  173. Gregory CD, Pound JD (2011) Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J Pathol 223(2):177–194

    PubMed  CAS  Google Scholar 

  174. Henson PM, Vandivier RW, Douglas IS (2006) Cell death, remodeling, and repair in chronic obstructive pulmonary disease? Proc Am Thorac Soc 3(8):713–717

    PubMed  CAS  Google Scholar 

  175. Voelkel N, Taraseviciene-Stewart L (2005) Emphysema: an autoimmune vascular disease? Proc Am Thorac Soc 2(1):23–25

    PubMed  CAS  Google Scholar 

  176. Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135(1): 173–180

    PubMed  Google Scholar 

  177. Yasuo M, Mizuno S, Kraskauskas D, Bogaard HJ, Natarajan R, Cool CD et al (2010) Hypoxia inducible factor-1 {alpha} in human emphysema lung tissue. Eur Respir J

    Google Scholar 

  178. Barbera JA, Peinado VI (2011) Disruption of the lung structure maintenance programme: a comprehensive view of emphysema development. Eur Respir J 37(4):752–754

    PubMed  CAS  Google Scholar 

  179. Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, Lee JD, Tuder RM, Nicolls MR et al (2006) Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc 3(8):687

    PubMed  CAS  Google Scholar 

  180. Sinden NJ, Stockley RA (2010) Systemic inflammation and comorbidity in COPD: a result of ‘overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax 65(10):930–936

    PubMed  Google Scholar 

Download references

Acknowledgements  

This work was supported by FAMRI CIA-072053, AHA SDG-0735388N, AHA GIA, Emphysema Research Fund, the Bixler COPD Foundation, and the Victoria Johnson Center for Obstructive Lung Disease Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert F. Voelkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taraseviciene-Stewart, L., Voelkel, N.F. (2013). Immunopathology of COPD. In: Rogers, T., Criner, G., Cornwell, W. (eds) Smoking and Lung Inflammation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7351-0_1

Download citation

Publish with us

Policies and ethics