Immunopathology of COPD

  • Laimute Taraseviciene-Stewart
  • Norbert F. Voelkel


This review focuses on new aspects of the pathogenic autoimmune mechanisms of COPD unveiled in recent years. We emphasize the importance of lung inflammation, innate and adaptive immune responses, as well as an autoimmune component in lung tissue destruction and repair.


Chronic Obstructive Pulmonary Disease Mast Cell Chronic Obstructive Pulmonary Disease Patient Cigarette Smoke Exposure Secondhand Smoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by FAMRI CIA-072053, AHA SDG-0735388N, AHA GIA, Emphysema Research Fund, the Bixler COPD Foundation, and the Victoria Johnson Center for Obstructive Lung Disease Research.


  1. 1.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176(6):532–555PubMedGoogle Scholar
  2. 2.
    Filley GF (1967) Emphysema and chronic bronchitis: clinical manifestations and their physiologic significance. Med Clin North Am 51(2):283–292PubMedGoogle Scholar
  3. 3.
    Niewoehner DE (1988) Cigarette smoking, lung inflammation, and the development of emphysema. J Lab Clin Med 111(1):15PubMedGoogle Scholar
  4. 4.
    Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 4:435–459PubMedGoogle Scholar
  5. 5.
    Doherty DE, Briggs DD Jr (2004) Chronic obstructive pulmonary disease: epidemiology, pathogenesis, disease course, and prognosis. Clin Cornerstone 2:S5–16PubMedGoogle Scholar
  6. 6.
    Mehta H, Nazzal K, Sadikot RT (2008) Cigarette smoking and innate immunity. Inflamm Res 57(11):497PubMedGoogle Scholar
  7. 7.
    Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350(26):2645PubMedGoogle Scholar
  8. 8.
    Snider GL, Kleinerman J, Thurlbeck WM, Bengali ZH (1985) The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 132(1):182–185Google Scholar
  9. 9.
    Laennec RT (1819) De auscultation mediate, on traite du diagnostic del maladies des poumons et du coeur. Brosson et Chaude, ParisGoogle Scholar
  10. 10.
    Fletcher C, Peto R (1977) The natural history of chronic airflow obstruction. Br Med J 1(6077):1645PubMedGoogle Scholar
  11. 11.
    Abbey DE, Burchette RJ, Knutsen SF, McDonnell WF, Lebowitz MD, Enright PL (1998) Long-term particulate and other air pollutants and lung function in nonsmokers. Am J Respir Crit Care Med 158(1):289–298PubMedGoogle Scholar
  12. 12.
    Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicelli F, Duffin R et al (2000) Activation of NF-kappaB by PM(10) occurs via an iron-mediated mechanism in the absence of IkappaB degradation. Toxicol Appl Pharmacol 166(2):101–110PubMedGoogle Scholar
  13. 13.
    Karakatsani A, Andreadaki S, Katsouyanni K, Dimitroulis I, Trichopoulos D, Benetou V et al (2003) Air pollution in relation to manifestations of chronic pulmonary disease: a nested case–control study in Athens, Greece. Eur J Epidemiol 18(1):45–53PubMedGoogle Scholar
  14. 14.
    Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3):e1000421PubMedGoogle Scholar
  15. 15.
    Joos L, Pare PD, Sandford AJ (2002) Genetic risk factors. In: Voelkel NF, MacNee W (eds) Chronic obstructive lung diseases. BC Decker Inc., London/HamiltonGoogle Scholar
  16. 16.
    Todd JL, Goldstein DB, Ge D, Christie J, Palmer SM (2011) The state of genome-wide association studies in pulmonary disease: a new perspective. Am J Respir Crit Care Med 184(8):873–880PubMedGoogle Scholar
  17. 17.
    Nakamura H (2011) Genetics of COPD. Allergol Int 60(3):253–258Google Scholar
  18. 18.
    Siedlinski M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W et al (2011) Genome-wide association study of smoking behaviours in patients with COPD. ThoraxGoogle Scholar
  19. 19.
    Castaldi PJ, Cho MH, Litonjua AA, Bakke P, Gulsvik A, Lomas DA et al (2011) The association of genome-wide significant spirometric loci with COPD susceptibility. Am J Respir Cell Mol BiolGoogle Scholar
  20. 20.
    Silverman EK, Weiss ST, Drazen JM, Chapman HA, Carey V, Campbell EJ et al (2000) Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162(6):2152–2158PubMedGoogle Scholar
  21. 21.
    Kim WD, Eidelman DH, Izquierdo JL, Ghezzo H, Saetta MP, Cosio MG (1991) Centrilobular and panlobular emphysema in smokers. Two distinct morphologic and functional entities. Am Rev Respir Dis 144(6):1385–1390PubMedGoogle Scholar
  22. 22.
    Anderson D, Macnee W (2009) Targeted treatment in COPD: a multi-system approach for a multi-system disease. Int J Chron Obstruct Pulmon Dis 4:321–335PubMedGoogle Scholar
  23. 23.
    Agusti A, MacNee W, Donaldson K, Cosio M (2003) Hypothesis: does COPD have an autoimmune component? Thorax 58(10):832PubMedGoogle Scholar
  24. 24.
    Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22(4):672PubMedGoogle Scholar
  25. 25.
    Churg A, Wright JL (2005) Proteases and emphysema. Curr Opin Pulm Med 11(2):153PubMedGoogle Scholar
  26. 26.
    Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31(6):1334–1356PubMedGoogle Scholar
  27. 27.
    Churg A, Cosio M, Wright JL (2008) Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol 294(4):L612PubMedGoogle Scholar
  28. 28.
    Kardos P, Keenan J (2006) Tackling COPD: a multicomponent disease driven by inflammation. MedGenMed 8(3):54PubMedGoogle Scholar
  29. 29.
    Burrows B, Halonen M, Barbee RA, Lebowitz MD (1981) The relationship of serum immunoglobulin E to cigarette smoking. Am Rev Respir Dis 124(5):523PubMedGoogle Scholar
  30. 30.
    Hurd S, Pauwels R (2002) Global initiative for chronic obstructive lung diseases (GOLD). Pulm Pharmacol Ther 15(4):353PubMedGoogle Scholar
  31. 31.
    Scichilone N, Battaglia S, La Sala A, Bellia V (2006) Clinical implications of airway hyperresponsiveness in COPD. Int J Chron Obstruct Pulmon Dis 1(1):49–60PubMedGoogle Scholar
  32. 32.
    Orie NG (1961) Correlations of emphysema and asthmatic constitution. Acta Allergol 16:407–409PubMedGoogle Scholar
  33. 33.
    Rijcken B, Schouten JP, Xu X, Rosner B, Weiss ST (1995) Airway hyperresponsiveness to histamine associated with accelerated decline in FEV1. Am J Respir Crit Care Med 151(5):1377–1382PubMedGoogle Scholar
  34. 34.
    Celli BR, MacNee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23(6):932–946PubMedGoogle Scholar
  35. 35.
    Postma DS, Boezen HM (2004) Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest 126(2 Suppl):96S–104S, discussion 59S–61SPubMedGoogle Scholar
  36. 36.
    Barnes PJ, Cosio MG (2004) Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med 1(1):e20PubMedGoogle Scholar
  37. 37.
    van der Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M et al (2006) Cigarette smoke-induced emphysema: a role for the B cell? Am J Respir Crit Care Med 173(7):751PubMedGoogle Scholar
  38. 38.
    Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360(23):2445–2454PubMedGoogle Scholar
  39. 39.
    Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E et al (2008) Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(2):156PubMedGoogle Scholar
  40. 40.
    Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S et al (2007) Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 13(5):567PubMedGoogle Scholar
  41. 41.
    Taraseviciene-Stewart L, Kraskauskiene V, Burns N, Voelkel NF (2008) Presence of anti-endothelial cell antibodies in patients with COPD. Am J Respir Crit Care Med 177:A658Google Scholar
  42. 42.
    Leidinger P, Keller A, Heisel S, Ludwig N, Rheinheimer S, Klein V et al (2009) Novel autoantigens immunogenic in COPD patients. Respir Res 10:20PubMedGoogle Scholar
  43. 43.
    Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–262PubMedGoogle Scholar
  44. 44.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMedGoogle Scholar
  45. 45.
    Galgani M, Fabozzi I, Perna F, Bruzzese D, Bellofiore B, Calabrese C et al (2010) Imbalance of circulating dendritic cell subsets in chronic obstructive pulmonary disease. Clin Immunol 137(1):102–110PubMedGoogle Scholar
  46. 46.
    Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD (1999) Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 29(9):2769–2778PubMedGoogle Scholar
  47. 47.
    MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520PubMedGoogle Scholar
  48. 48.
    Vermaelen K, Pauwels R (2004) Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry A 61(2):170–177PubMedGoogle Scholar
  49. 49.
    GeurtsvanKessel CH, Lambrecht BN (2008) Division of labor between dendritic cell subsets of the lung. Mucosal Immunol 1(6):442–450PubMedGoogle Scholar
  50. 50.
    Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR (2006) A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176(4):2161–2172PubMedGoogle Scholar
  51. 51.
    Jakubzick C, Helft J, Kaplan TJ, Randolph GJ (2008) Optimization of methods to study pulmonary dendritic cell migration reveals distinct capacities of DC subsets to acquire soluble versus particulate antigen. J Immunol Methods 337(2):121–131PubMedGoogle Scholar
  52. 52.
    Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358PubMedGoogle Scholar
  53. 53.
    Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837PubMedGoogle Scholar
  54. 54.
    Lou Y, Liu C, Kim GJ, Liu YJ, Hwu P, Wang G (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178(3):1534–1541PubMedGoogle Scholar
  55. 55.
    Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA et al (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204(1):105–115PubMedGoogle Scholar
  56. 56.
    Suda T, McCarthy K, Vu Q, McCormack J, Schneeberger EE (1998) Dendritic cell precursors are enriched in the vascular compartment of the lung. Am J Respir Cell Mol Biol 19(5):728–737PubMedGoogle Scholar
  57. 57.
    Sertl K, Takemura T, Tschachler E, Ferrans VJ, Kaliner MA, Shevach EM (1986) Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med 163(2):436–451PubMedGoogle Scholar
  58. 58.
    Desch AN, Randolph GJ, Murphy K, Gautier EL, Kedl RM, Lahoud MH et al (2011) CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J Exp Med 208(9):1789–1797PubMedGoogle Scholar
  59. 59.
    Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204PubMedGoogle Scholar
  60. 60.
    Masten BJ, Olson GK, Tarleton CA, Rund C, Schuyler M, Mehran R et al (2006) Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol 177(11):7784–7793PubMedGoogle Scholar
  61. 61.
    Tsoumakidou M, Bouloukaki I, Koutala H, Kouvidi K, Mitrouska I, Zakynthinos S et al (2009) Decreased sputum mature dendritic cells in healthy smokers and patients with chronic obstructive pulmonary disease. Int Arch Allergy Immunol 150(4):389–397PubMedGoogle Scholar
  62. 62.
    Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE et al (2007) Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 175(10):998–1005PubMedGoogle Scholar
  63. 63.
    Freeman CM, Martinez FJ, Han MK, Ames TM, Chensue SW, Todt JC et al (2009) Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180(12):1179–1188PubMedGoogle Scholar
  64. 64.
    Brusselle GG, Joos GF, Bracke KR (2011) New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378(9795):1015–1026PubMedGoogle Scholar
  65. 65.
    Voelkel MA, Terry JL, Riches DWH, Wynes MW (2008) Macrophage involvement in chronic obstructive pulmonary disease. Chronic obstructive lung diseases 2. BC Decker Inc., Hamilton, pp 85–105Google Scholar
  66. 66.
    Prussin C, Metcalfe DD (2003) 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 111(2 Suppl):S486–S494PubMedGoogle Scholar
  67. 67.
    Mortaz E, Folkerts G, Redegeld F (2011) Mast cells and COPD. Pulm Pharmacol Ther 24(4):367–372PubMedGoogle Scholar
  68. 68.
    Brinkman GL (1968) The mast cell in normal human bronchus and lung. J Ultrastruct Res 23(1):115–123PubMedGoogle Scholar
  69. 69.
    Lazaar AL, Plotnick MI, Kucich U, Crichton I, Lotfi S, Das SK et al (2002) Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol 169(2):1014–1020PubMedGoogle Scholar
  70. 70.
    MacGlashan D Jr (2008) IgE receptor and signal transduction in mast cells and basophils. Curr Opin Immunol 20(6):717–723PubMedGoogle Scholar
  71. 71.
    Kumar V, Sharma A (2010) Mast cells: emerging sentinel innate immune cells with diverse role in immunity. Mol Immunol 48(1–3):14–25PubMedGoogle Scholar
  72. 72.
    Garcia-Roman J, Ibarra-Sanchez A, Lamas M, Gonzalez Espinosa C (2010) VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells. Biochem Biophys Res Commun 401(2):262–267PubMedGoogle Scholar
  73. 73.
    Aroni K, Voudouris S, Ioannidis E, Grapsa A, Kavantzas N, Patsouris E (2010) Increased angiogenesis and mast cells in the centre compared to the periphery of vitiligo lesions. Arch Dermatol Res 302(8):601–607PubMedGoogle Scholar
  74. 74.
    Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin North Am 26(3):407–425PubMedGoogle Scholar
  75. 75.
    Walter A, Walter S (1982) Mast cell density in isolated monkey lungs on exposure to cigarette smoke. Thorax 37(9):699–702PubMedGoogle Scholar
  76. 76.
    Kalenderian R, Raju L, Roth W, Schwartz LB, Gruber B, Janoff A (1988) Elevated histamine and tryptase levels in smokers’ bronchoalveolar lavage fluid. Do lung mast cells contribute to smokers’ emphysema? Chest 94(1):119–123PubMedGoogle Scholar
  77. 77.
    Mortaz E, Redegeld FA, Sarir H, Karimi K, Raats D, Nijkamp FP et al (2008) Cigarette smoke stimulates the production of chemokines in mast cells. J Leukoc Biol 83(3):575–580PubMedGoogle Scholar
  78. 78.
    Wen Y, Reid DW, Zhang D, Ward C, Wood-Baker R, Walters EH (2010) Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD. Int J Chron Obstruct Pulmon Dis 5:327–334PubMedGoogle Scholar
  79. 79.
    Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS (2010) Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(3):206–217PubMedGoogle Scholar
  80. 80.
    He S, Aslam A, Gaca MD, He Y, Buckley MG, Hollenberg MD et al (2004) Inhibitors of tryptase as mast cell-stabilizing agents in the human airways: effects of tryptase and other agonists of proteinase-activated receptor 2 on histamine release. J Pharmacol Exp Ther 309(1):119–126PubMedGoogle Scholar
  81. 81.
    White MC, McHowat J (2007) Protease activation of calcium-independent phospholipase A2 leads to neutrophil recruitment to coronary artery endothelial cells. Thromb Res 120(4):597–605PubMedGoogle Scholar
  82. 82.
    Saetta M, Di Stefano A, Maestrelli P, Ferraresso A, Drigo R, Potena A et al (1993) Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 147(2):301–306PubMedGoogle Scholar
  83. 83.
    Riise GC, Ahlstedt S, Larsson S, Enander I, Jones I, Larsson P et al (1995) Bronchial inflammation in chronic bronchitis assessed by measurement of cell products in bronchial lavage fluid. Thorax 50(4):360–365PubMedGoogle Scholar
  84. 84.
    Hargreave FE (1999) Induced sputum for the investigation of airway inflammation: evidence for its clinical application. Can Respir J 6(2):169–174PubMedGoogle Scholar
  85. 85.
    Rutgers SR, Postma DS, ten Hacken NH, Kauffman HF, van Der Mark TW, Koeter GH et al (2000) Ongoing airway inflammation in patients with COPD who do not currently smoke. Chest 117(5 Suppl 1):262SPubMedGoogle Scholar
  86. 86.
    Lams BE, Sousa AR, Rees PJ, Lee TH (1998) Immunopathology of the small-airway submucosa in smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158(5 Pt 1):1518–1523PubMedGoogle Scholar
  87. 87.
    D’Armiento JM, Scharf SM, Roth MD, Connett JE, Ghio A, Sternberg D et al (2009) Eosinophil and T cell markers predict functional decline in COPD patients. Respir Res 10:113PubMedGoogle Scholar
  88. 88.
    Perng DW, Huang HY, Chen HM, Lee YC, Perng RP (2004) Characteristics of airway inflammation and bronchodilator reversibility in COPD: a potential guide to treatment. Chest 126(2):375–381PubMedGoogle Scholar
  89. 89.
    Bocchino V, Bertorelli G, Bertrand CP, Ponath PD, Newman W, Franco C et al (2002) Eotaxin and CCR3 are up-regulated in exacerbations of chronic bronchitis. Allergy 57(1):17–22PubMedGoogle Scholar
  90. 90.
    Baraldo S, Turato G, Badin C, Bazzan E, Beghe B, Zuin R et al (2004) Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 59(4):308–312PubMedGoogle Scholar
  91. 91.
    Hunninghake GW, Crystal RG (1983) Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 128(5):833–838PubMedGoogle Scholar
  92. 92.
    Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277(5334):2002PubMedGoogle Scholar
  93. 93.
    Ofulue AF, Ko M (1999) Effects of depletion of neutrophils or macrophages on development of cigarette smoke-induced emphysema. Am J Physiol 277(1 Pt 1):L97PubMedGoogle Scholar
  94. 94.
    Shapiro SD (1999) The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(5 Pt 2):S29–S32PubMedGoogle Scholar
  95. 95.
    Churg A, Zay K, Shay S, Xie C, Shapiro SD, Hendricks R et al (2002) Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol 27(3):368–374PubMedGoogle Scholar
  96. 96.
    Ofulue AF, Ko M, Abboud RT (1998) Time course of neutrophil and macrophage elastinolytic activities in cigarette smoke-induced emphysema. Am J Physiol 275(6 Pt 1): L1134–L1144PubMedGoogle Scholar
  97. 97.
    Barnes PJ (2004) Alveolar macrophages as orchestrators of COPD. COPD 1(1):59–70PubMedGoogle Scholar
  98. 98.
    Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969PubMedGoogle Scholar
  99. 99.
    Thompson AB, Daughton D, Robbins RA, Ghafouri MA, Oehlerking M, Rennard SI (1989) Intraluminal airway inflammation in chronic bronchitis. Characterization and correlation with clinical parameters. Am Rev Respir Dis 140(6):1527–1537PubMedGoogle Scholar
  100. 100.
    Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J et al (2002) Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26(5):602–609PubMedGoogle Scholar
  101. 101.
    Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM et al (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352(19): 1967–1976PubMedGoogle Scholar
  102. 102.
    Mizuno S, Yasuo M, Bogaard HJ, Kraskauskas D, Natarajan R, Voelkel NF (2010) Inhibition of histone deacetylase causes emphysema. Am J Physiol Lung Cell Mol PhysiolGoogle Scholar
  103. 103.
    Richens TR, Linderman DJ, Horstmann SA, Lambert C, Xiao YQ, Keith RL et al (2009) Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am J Respir Crit Care Med 179(11):1011–1021PubMedGoogle Scholar
  104. 104.
    Petrusca DN, Gu Y, Adamowicz JJ, Rush NI, Hubbard WC, Smith PA et al (2010) Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J Biol Chem 285(51):40322–40332PubMedGoogle Scholar
  105. 105.
    Borchers MT, Wesselkamper SC, Harris NL, Deshmukh H, Beckman E, Vitucci M et al (2007) CD8+ T cells contribute to macrophage accumulation and airspace enlargement following repeated irritant exposure. Exp Mol Pathol 83(3):301–310PubMedGoogle Scholar
  106. 106.
    Motz GT, Eppert BL, Sun G, Wesselkamper SC, Linke MJ, Deka R et al (2008) Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol 181(11):8036–8043PubMedGoogle Scholar
  107. 107.
    Sullivan AK, Simonian PL, Falta MT, Mitchell JD, Cosgrove GP, Brown KK et al (2005) Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med 172:590–596PubMedGoogle Scholar
  108. 108.
    Maeno T, Houghton AM, Quintero PA, Grumelli S, Owen CA, Shapiro SD (2007) CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 178(12):8090PubMedGoogle Scholar
  109. 109.
    Mortaz E, Kraneveld AD, Smit JJ, Kool M, Lambrecht BN, Kunkel SL et al (2009) Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. PLoS One 4(3):e4946PubMedGoogle Scholar
  110. 110.
    Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev Immunol 2(5):372PubMedGoogle Scholar
  111. 111.
    Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Moore M, Sullivan A, Nicolls MR et al (2005) An animal model of autoimmune emphysema. Am J Respir Crit Care Med 171(7):734PubMedGoogle Scholar
  112. 112.
    Pons J, Sauleda J, Ferrer JM, Barcelo B, Fuster A, Regueiro V et al (2005) Blunted gamma delta T-lymphocyte response in chronic obstructive pulmonary disease. Eur Respir J 25(3):441PubMedGoogle Scholar
  113. 113.
    Gosman MM, Willemse BW, Jansen DF, Lapperre TS, van Schadewijk A, Hiemstra PS et al (2006) Increased number of B-cells in bronchial biopsies in COPD. Eur Respir J 27(1):60–64PubMedGoogle Scholar
  114. 114.
    Brusselle GG, Demoor T, Bracke KR, Brandsma CA, Timens W (2009) Lymphoid follicles in (very) severe COPD: beneficial or harmful? Eur Respir J 34(1):219–230PubMedGoogle Scholar
  115. 115.
    Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86(2):515–581PubMedGoogle Scholar
  116. 116.
    Kratzer A, Chu HW, Salys J, Moumen Z, Leberl M, Bowler R, Cool C, Zamora M, Taraseviciene-Stewart L. (2013) Endothelial cell adhesion molecule CD146: implications for its role in the pathogenesis of COPD. J Pathol. 2013, Epub May 3Google Scholar
  117. 117.
    Kratzer A, Salys J, Nold C, Cool C, Zamora M, Bowler R, Koczulla AR, Janciauskiene S, Edwards M, Dinarello C, Taraseviciene-Stewart L. (2013) Interleukin 18 and endothelial cell death in second hand cigarette smoke-induced emphysema. Am J Respir Cell Mol Biol. 2013 Epub Feb 9Google Scholar
  118. 118.
    Mountain DJ, Singh M, Singh K (2008) Interleukin-1beta-mediated inhibition of the processes of angiogenesis in cardiac microvascular endothelial cells. Life Sci 82(25–26):1224–1230PubMedGoogle Scholar
  119. 119.
    Wang JG, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JP et al (2011) Monocytic microparticles activate endothelial cells in an IL-1beta-dependent manner. Blood 118(8):2366–2374PubMedGoogle Scholar
  120. 120.
    Bry K, Whitsett JA, Lappalainen U (2007) IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36(1):32–42PubMedGoogle Scholar
  121. 121.
    Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005) Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32(4):311–318PubMedGoogle Scholar
  122. 122.
    Ma B, Blackburn MR, Lee CG, Homer RJ, Liu W, Flavell RA et al (2006) Adenosine metabolism and murine strain-specific IL-4-induced inflammation, emphysema, and fibrosis. J Clin Invest 116(5):1274–1283PubMedGoogle Scholar
  123. 123.
    Kuhn C 3rd, Homer RJ, Zhu Z, Ward N, Flavell RA, Geba GP et al (2000) Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J Respir Cell Mol Biol 22(3):289–295PubMedGoogle Scholar
  124. 124.
    Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr et al (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 106(9):1081PubMedGoogle Scholar
  125. 125.
    Hoshino T, Kato S, Oka N, Imaoka H, Kinoshita T, Takei S et al (2007) Pulmonary inflammation and emphysema: role of the cytokines IL-18 and IL-13. Am J Respir Crit Care Med 176(1):49–62PubMedGoogle Scholar
  126. 126.
    Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA Jr et al (2000) Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 192(11):1587PubMedGoogle Scholar
  127. 127.
    Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A et al (2001) Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 280(1):L39–L49PubMedGoogle Scholar
  128. 128.
    Tang K, Rossiter HB, Wagner PD, Breen EC (2004) Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 97(4):1559PubMedGoogle Scholar
  129. 129.
    Nakanishi K, Takeda Y, Tetsumoto S, Iwasaki T, Tsujino K, Kuhara H et al (2011) Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy. Am J Respir Crit Care Med 183(9):1164–1175PubMedGoogle Scholar
  130. 130.
    Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF et al (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 97(11):5972–5977PubMedGoogle Scholar
  131. 131.
    Zhang X, Shan P, Jiang G, Cohn L, Lee PJ (2006) Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 116(11):3050–3059PubMedGoogle Scholar
  132. 132.
    Leco KJ, Waterhouse P, Sanchez OH, Gowing KL, Poole AR, Wakeham A et al (2001) Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 108(6):817–829PubMedGoogle Scholar
  133. 133.
    Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B (2006) Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 20(6):720–722PubMedGoogle Scholar
  134. 134.
    Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G et al (2003) Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 422(6928):169–173PubMedGoogle Scholar
  135. 135.
    Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M et al (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 173(3):2099–2108PubMedGoogle Scholar
  136. 136.
    Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF et al (2005) Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 288(4):L683–L691PubMedGoogle Scholar
  137. 137.
    Funada Y, Nishimura Y, Yokoyama M (2004) Imbalance of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 is associated with pulmonary emphysema in Klotho mice. Kobe J Med Sci 50(3–4):59–67PubMedGoogle Scholar
  138. 138.
    Suga T, Kurabayashi M, Sando Y, Ohyama Y, Maeno T, Maeno Y et al (2000) Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am J Respir Cell Mol Biol 22(1):26–33PubMedGoogle Scholar
  139. 139.
    Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL (2004) Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 170(5):492PubMedGoogle Scholar
  140. 140.
    D’Hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF et al (2006) Role of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J 28(1):102–112PubMedGoogle Scholar
  141. 141.
    Kang MJ, Homer RJ, Gallo A, Lee CG, Crothers KA, Cho SJ et al (2007) IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J Immunol 178(3):1948–1959PubMedGoogle Scholar
  142. 142.
    Bracke KR, D’Hulst AI, Maes T, Moerloose KB, Demedts IK, Lebecque S et al (2006) Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J Immunol 177(7):4350–4359PubMedGoogle Scholar
  143. 143.
    Bracke KR, D’Hulst AI, Maes T, Demedts IK, Moerloose KB, Kuziel WA et al (2007) Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin Exp Allergy 37(10):1467–1479PubMedGoogle Scholar
  144. 144.
    Matsuzaki Y, Xu Y, Ikegami M, Besnard V, Park KS, Hull WM et al (2006) Stat3 is required for cytoprotection of the respiratory epithelium during adenoviral infection. J Immunol 177(1):527–537PubMedGoogle Scholar
  145. 145.
    Boutten A, Bonay M, Laribe S, Leseche G, Castier Y, Lecon-Malas V et al (2004) Decreased expression of interleukin 13 in human lung emphysema. Thorax 59(10):850–854PubMedGoogle Scholar
  146. 146.
    Ma B, Kang MJ, Lee CG, Chapoval S, Liu W, Chen Q et al (2005) Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest 115(12):3460PubMedGoogle Scholar
  147. 147.
    Imaoka H, Hoshino T, Takei S, Kinoshita T, Okamoto M, Kawayama T et al (2008) Interleukin-18 production and pulmonary function in COPD. Eur Respir J 31(2):287–297PubMedGoogle Scholar
  148. 148.
    Anthonisen NR, Connett JE, Murray RP (2002) Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med 166(5):675–679PubMedGoogle Scholar
  149. 149.
    Hogg JC (2001) Chronic obstructive pulmonary disease: an overview of pathology and pathogenesis. Novartis Found Symp 234:4–19, discussion −26PubMedGoogle Scholar
  150. 150.
    Michaeli D, Fudenberg HH (1974) Antibodies to collagen in patients with emphysema. Clin Immunol Immunopathol 3(2):187–192PubMedGoogle Scholar
  151. 151.
    Brandsma CA, Kerstjens HA, Geerlings M, Kerkhof M, Hylkema MN, Postma DS et al (2011) The search for autoantibodies against elastin, collagen and decorin in COPD. Eur Respir J 37(5):1289–1292PubMedGoogle Scholar
  152. 152.
    Bonarius HP, Brandsma CA, Kerstjens HA, Koerts JA, Kerkhof M, Nizankowska-Mogilnicka E et al (2011) Antinuclear autoantibodies are more prevalent in COPD in association with low body mass index but not with smoking history. Thorax 66(2):101–107PubMedGoogle Scholar
  153. 153.
    Koethe SM, Kuhnmuench JR, Becker CG (2000) Neutrophil priming by cigarette smoke condensate and a tobacco anti-idiotypic antibody. Am J Pathol 157(5):1735PubMedGoogle Scholar
  154. 154.
    Greene CM, Low TB, O’Neill SJ, McElvaney NG (2010) Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease. Am J Respir Crit Care Med 181(1):31–35PubMedGoogle Scholar
  155. 155.
    Cottin V, Fabien N, Khouatra C, Moreira A, Cordier JF (2009) Anti-elastin autoantibodies are not present in combined pulmonary fibrosis and emphysema. Eur Respir J 33(1): 219–221PubMedGoogle Scholar
  156. 156.
    Wood AM, de Pablo P, Buckley CD, Ahmad A, Stockley RA (2011) Smoke exposure as a determinant of autoantibody titre in alpha-antitrypsin deficiency and COPD. Eur Respir J 37(1):32–38PubMedGoogle Scholar
  157. 157.
    Motz GT, Eppert BL, Wesselkamper SC, Flury JL, Borchers MT (2010) Chronic cigarette smoke exposure generates pathogenic T cells capable of driving COPD-like disease in Rag2−/− mice. Am J Respir Crit Care Med 181(11):1223–1233PubMedGoogle Scholar
  158. 158.
    Karayama M, Inui N, Suda T, Nakamura Y, Nakamura H, Chida K (2010) Antiendothelial cell antibodies in patients with COPD. Chest 138(6):1303–1308PubMedGoogle Scholar
  159. 159.
    Plotz PH (2003) The autoantibody repertoire: searching for order. Nat Rev Immunol 3(1):73–78PubMedGoogle Scholar
  160. 160.
    Naparstek Y, Plotz PH (1993) The role of autoantibodies in autoimmune disease. Annu Rev Immunol 11:79–104PubMedGoogle Scholar
  161. 161.
    Taraseviciene-Stewart L, Kraskauskiene V, Burns N, Voelkel NF (2007) Anti-endothelial cell antibodies in patients with COPD. European Respiratory Society Annual Congress, Stockholm, 15–19 Sept 2007, p E496Google Scholar
  162. 162.
    Nana-Sinkam SP, Lee JD, Stearman R, Sakao S, Sotto-Santiago S, Voelkel NF et al (2006) Prostacyclin synthase in smoking-related lung disease. Proc Am Thorac Soc 3(6):517PubMedGoogle Scholar
  163. 163.
    Taraseviciene-Stewart L, Voelkel NF (2008) Molecular pathogenesis of emphysema. J Clin Invest 118(2):394PubMedGoogle Scholar
  164. 164.
    Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7(1):53PubMedGoogle Scholar
  165. 165.
    Hanaoka M, Nicolls MR, Fontenot AP, Kraskauskas D, Mack DG, Kratzer A et al (2010) Immunomodulatory strategies prevent the development of autoimmune emphysema. Respir Res 11:179PubMedGoogle Scholar
  166. 166.
    Gordon C, Gudi K, Krause A, Sackrowitz R, Harvey BG, Strulovici-Barel Y et al (2011) Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med 184(2):224–232PubMedGoogle Scholar
  167. 167.
    Chandra D, Sciurba FC, Gladwin MT (2011) Endothelial chronic destructive pulmonary disease (E-CDPD): is endothelial apoptosis a subphenotype or prequel to COPD? Am J Respir Crit Care Med 184(2):153–155PubMedGoogle Scholar
  168. 168.
    Ma B, Dela Cruz CS, Hartl D, Kang MJ, Takyar S, Homer RJ et al (2011) RIG-like helicase innate immunity inhibits vascular endothelial growth factor tissue responses via a type I IFN-dependent mechanism. Am J Respir Crit Care Med 183(10):1322–1335PubMedGoogle Scholar
  169. 169.
    Marwick JA, Stevenson CS, Giddings J, MacNee W, Butler K, Rahman I et al (2006) Cigarette smoke disrupts VEGF165-VEGFR-2 receptor signaling complex in rat lungs and patients with COPD: morphological impact of VEGFR-2 inhibition. Am J Physiol Lung Cell Mol Physiol 290(5):L897–L908PubMedGoogle Scholar
  170. 170.
    Voelkel NF, Vandivier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290(2):L209–L221PubMedGoogle Scholar
  171. 171.
    Voelkel NF (2008) Vascular endothelial growth factor and its role in emphysema and asthma. In: Voelkel NF, MacNee W (eds) Chronic obstructive lung diseases 2. BC Decker Inc., Hamilton, pp 77–83Google Scholar
  172. 172.
    Stevenson CS, Docx C, Webster R, Battram C, Hynx D, Giddings J et al (2007) Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol 293(5):L1183–L1193PubMedGoogle Scholar
  173. 173.
    Gregory CD, Pound JD (2011) Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J Pathol 223(2):177–194PubMedGoogle Scholar
  174. 174.
    Henson PM, Vandivier RW, Douglas IS (2006) Cell death, remodeling, and repair in chronic obstructive pulmonary disease? Proc Am Thorac Soc 3(8):713–717PubMedGoogle Scholar
  175. 175.
    Voelkel N, Taraseviciene-Stewart L (2005) Emphysema: an autoimmune vascular disease? Proc Am Thorac Soc 2(1):23–25PubMedGoogle Scholar
  176. 176.
    Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135(1): 173–180PubMedGoogle Scholar
  177. 177.
    Yasuo M, Mizuno S, Kraskauskas D, Bogaard HJ, Natarajan R, Cool CD et al (2010) Hypoxia inducible factor-1 {alpha} in human emphysema lung tissue. Eur Respir JGoogle Scholar
  178. 178.
    Barbera JA, Peinado VI (2011) Disruption of the lung structure maintenance programme: a comprehensive view of emphysema development. Eur Respir J 37(4):752–754PubMedGoogle Scholar
  179. 179.
    Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, Lee JD, Tuder RM, Nicolls MR et al (2006) Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc 3(8):687PubMedGoogle Scholar
  180. 180.
    Sinden NJ, Stockley RA (2010) Systemic inflammation and comorbidity in COPD: a result of ‘overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax 65(10):930–936PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laimute Taraseviciene-Stewart
    • 1
  • Norbert F. Voelkel
    • 2
  1. 1.Department of MedicineUniversity of Colorado Denver, School of MedicineAuroraUSA
  2. 2.Commonwealth University, Internal MedicineRichmondUSA

Personalised recommendations