Maternal Diet Quality and Pregnancy Outcomes

  • Clara L. Rodríguez-Bernal
  • Marisa Rebagliato
  • Leda Chatzi
  • Clara Cavero Carbonell
  • Carmen Martos
  • Ferran Ballester
Part of the Nutrition and Health book series (NH)


Assessment of the relationship between diet during gestation and pregnancy outcomes has been based mainly on nutrient deficiencies; moreover, the results for certain nutrients or food groups are still controversial in the case of middle or high-income countries. Maternal diet as a composite measure, its quality, and its effects on pregnancy outcomes has been scarcely studied. The body of epidemiological evidence regarding the association of diet quality and pregnancy outcomes is weak overall nonetheless suggestive of a beneficial effect of a high-quality diet even in middle or high income settings, where populations are assumed to be well-nourished.


Diet quality Dietary patterns Pregnancy outcomes Nutrition Fetal growth Preterm birth Neural tube defects Dietary indexes 



Alternate Healthy Eating Index


Body mass index


Dietary Glycemic Index


Diet Quality Index


Fetal growth restriction


Large for gestational age


Mediterranean diet


Mediterranean Diet Scale


Monounsaturated fatty acids


Neural tube defects


Polyunsaturated fatty acids


Randomized controlled trial


Small for gestational age


United States of America



Authors appreciate the English revision made by Mr. Jonathon Scandrett and are grateful to Dr. Gabriel Sanfélix-Gimeno for his useful comments and critical revision, also to Mr. Miguel Martinez and Ms. Diana Rodríguez for their help with the graphics of the present manuscript.


  1. 1.
    Abu-Saad K, Fraser D. Maternal nutrition and birth outcomes. Epidemiol Rev. 2010;32:5–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Scholl TO, Johnson WG. Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr. 2000;71:S1295–303.Google Scholar
  3. 3.
    Halldorsson TI, Meltzer H, Thorsdottir I, Knudsen V, Olsen S. Is high consumption of fatty fish during pregnancy a risk factor for fetal growth retardation? A study of 44,824 Danish pregnant women. Am J Epidemiol. 2007;166:687–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Medical Research Council Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338:131–7.CrossRefGoogle Scholar
  5. 5.
    McIntire DD, Bloom S, Casey B, Leveno K. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med. 1999;340:1234–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Eurocat. The status of health in the European Union. Congenital malformations. Eurocat: Ulster; 2009. p. 1–34.Google Scholar
  7. 7.
    Barker DJ, Eriksson J, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Yajnik CS. Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J Nutr. 2004;134:205–10.PubMedGoogle Scholar
  9. 9.
    Demmelmair H, von Rosen J, Koletzko B. Long-term consequences of early nutrition. Early Hum Dev. 2006;82(8):567–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu G, Bazer F, Cudd T, Meininger C, Spencer T. Maternal nutrition and fetal development. J Nutr. 2004;134:2169–72.PubMedGoogle Scholar
  11. 11.
    Jacobs Jr DR, Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr. 2003;78:508S–13.PubMedGoogle Scholar
  12. 12.
    Waijers PMC, Feskens E, Ocké M. A critical review of predefined diet quality scores. Br J Nutr. 2007;97:219–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13:3–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Mandruzzato G, Antsaklis A, Botet F, Chervenak FA, Figueras F, Grunebaum A, et al. Intrauterine restriction (IUGR). J Perinat Med. 2008;36(4):277–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Richards M, Hardy R, Kuh D, Wadsworth M. Birthweight, postnatal growth and cognitive function in a national UK birth cohort. Int J Epidemiol. 2002;31:342–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Barker DJ. Fetal origins of coronary heart disease. Acta Paediatr Suppl. 1997;422:78–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Imdad A, Yakoob MY, Siddiqui S, Bhutta ZA. Screening and triage of intrauterine growth restriction (IUGR) in general population and high risk pregnancies: a systematic review with a focus on reduction of IUGR related stillbirths. BMC Public Health. 2011;11 Suppl 3:S1.PubMedCrossRefGoogle Scholar
  19. 19.
    Gardosia J, Figuerasc F, Clausson B, Francisa A. The customised growth potential: an international research tool to study the epidemiology of fetal growth. Paediatr Perinat Epidemiol. 2011;25:2–10.CrossRefGoogle Scholar
  20. 20.
    Mamelle N, Boniol M, Rivière O, et al. Identification of newborns with fetal growth restriction (FGR) in weight and/or length based on constitutional growth potential. Eur J Pediatr. 2006;165:717–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Mikkelsen TB, Osler M, Orozova-Bekkevold I, et al. Association between fruit and vegetable consumption and birth weight: a prospective study among 43 585 Danish women. Scand J Public Health. 2006;34:616–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Ramon R, Ballester F, Iniguez C, et al. Vegetable but not fruit intake during pregnancy is associated with newborn anthropometric measures. J Nutr. 2009;139:561–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramon R, Ballester F, Aguinagalde X, et al. Fish consumption during pregnancy, prenatal mercury exposure, and anthropometric measures at birth in a prospective mother–infant cohort study in Spain. Am J Clin Nutr. 2009;90:1047–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Mannion CA, Gray-Donald K, Koski KG. Association of low intake of milk and vitamin D during pregnancy with decreased birth weight. CMAJ. 2006;174:1273–7.PubMedGoogle Scholar
  25. 25.
    Mardones F, García-Huidobro T, Ralph C, Farías M, Domínguez A, Rojas I, et al. Combined influence of preconception body mass index and gestational weight gain on fetal growth. Rev Méd Chile. 2011;139(6):710–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodríguez-Bernal CL, Rebagliato M, Ballester F. Maternal nutrition and fetal growth: the role of iron status and intake during pregnancy. Nutr Diet Suppl. 2012;4:25–37.CrossRefGoogle Scholar
  27. 27.
    Scholl TO, Chen X, Sims M, Stein T. Vitamin E: maternal concentrations are associated with fetal growth. Am J Clin Nutr. 2006;84:1442–8.PubMedGoogle Scholar
  28. 28.
    Knudsen VK, Orozova-Bekkevold IM, Mikkelsen TB, et al. Major dietary patterns in pregnancy and fetal growth. Eur J Clin Nutr. 2008;62:463–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Thompson JM, Wall C, Becroft DM, Robinson E, Wild CJ, Mitchell EA. Maternal dietary patterns in pregnancy and the association with small-for-gestational-age infants. Br J Nutr. 2010;103(11):1665–73.CrossRefGoogle Scholar
  30. 30.
    Trichopoulos D, Lagiou P. Dietary patterns and mortality. Br J Nutr. 2001;85:133–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Chatfield C, Collins AJ. Introduction to multivariate analysis. London: Chapman & Hall; 1995.Google Scholar
  32. 32.
    Rifas-Shiman SL, Rich-Edwards J, Kleinman K, Oken E, Gillman M. Dietary quality during pregnancy varies by maternal characteristics in Project Viva: a US cohort. J Am Diet Assoc. 2009;109:1004–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez-Bernal CL, Rebagliato M, Iniguez C, et al. Diet quality in early pregnancy and its effects on fetal growth outcomes: the Infancia y Medio Ambiente (Childhood and Environment) Mother and Child Cohort Study in Spain. Am J Clin Nutr. 2010;91:1659–66.PubMedCrossRefGoogle Scholar
  34. 34.
    Chatzi L, Mendez M, Garcia R, et al. Mediterranean diet adherence during pregnancy and fetal growth: INMA (Spain) and RHEA (Greece) mother-child cohort studies. Br J Nutr. 2012;107(1):135–45.PubMedCrossRefGoogle Scholar
  35. 35.
    McCullough ML, Feskanich D, Stampfer M, et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. 2002;76:1261–71.PubMedGoogle Scholar
  36. 36.
    Trichopoulou A. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.PubMedCrossRefGoogle Scholar
  37. 37.
    Bodnar LM, Siega-Riz A. A diet quality index for pregnancy detects variation in diet and differences by socio-demographic factors. Public Health Nutr. 2002;5:801–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Hann CS, Rock C, King I, Drewnowski A. Validation of the Healthy Eating Index with use of plasma biomarkers in a clinical sample of women. Am J Clin Nutr. 2001;74:479–86.PubMedGoogle Scholar
  39. 39.
    Mouratidou T, Ford F, Prountzou F, Fraser R. Dietary assessment of a population of pregnant women in Sheffield, UK. Br J Nutr. 2006;96:929–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Rodríguez-Bernal CL, Ramón R, Quiles J, et al. Dietary intake in pregnant women in a Spanish Mediterranean area: as good as it is supposed to be? Public Health Nutr. 2012;1–11. [Epub ahead of print].Google Scholar
  41. 41.
    Aaltonen J, Ojala T, Laitinen K, Piirainen TJ, Poussa TA, Isolauri E. Evidence of infant blood pressure programming by maternal nutrition during pregnancy: a prospective randomized controlled intervention study. J Pediatr. 2008;152(1):79–84, 84.e1–2.Google Scholar
  42. 42.
    Kinnunen TI, Pasanen M, Aittasalo M, et al. Preventing excessive weight gain during pregnancy—a controlled trial in primary health care. Eur J Clin Nutr. 2007;61(7):884–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Khoury J, Haugen G, Tonstad S, Frøslie KF, Henriksen T. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. Am J Obstet Gynecol. 2005;193:1292–301.PubMedCrossRefGoogle Scholar
  46. 46.
    Mikkelsen TB, Osterdal ML, Knudsen VK, et al. Association between a Mediterranean-type diet and risk of preterm birth among Danish women: a prospective cohort study. Acta Obstet Gynecol Scand. 2008;87(3):325–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Haugen M, Meltzer HM, Brantsaeter AL, et al. Mediterranean-type diet and risk of preterm birth among women in the Norwegian Mother and Child Cohort Study (MoBa): a prospective cohort study. Acta Obstet Gynecol Scand. 2008;87(3):319–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Hauth JC, Clifton RG, Roberts JM, et al. Vitamin C and E supplementation to prevent spontaneous preterm birth. Obstet Gynecol. 2010;116(3):653–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Detrait ER, George TM, Etchevers HC, Gilbert JR, Vekemans M, Speer MC. Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicol Teratol. 2005;27(3):515–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Tolmie J. Neural tube defects and other congenital malformations of the central nervous system. In: Rimoin DL, Connor JM, Pyeritz RE, editors. Emery and Rimoin’s principles and practice of medical genetics. New York: Churchill Livingston; 1996. p. 2152.Google Scholar
  51. 51.
    EUROCAT. Website database (2005–2009) [uploaded 06/12/2011]. European surveillance of congenital anomalies [web site]. Ulster [accessed 29 Jan 2012]. Prevalence tables. Disponible en: Scholar
  52. 52.
    Pachajoa H, Ariza Y, Isaza C, Méndez F. [Major birth defects in a third-level hospital in Cali, Colombia, 2004–2008]. Rev Salud Publica (Bogotá). 2011;13(1):152–62 (Spanish).Google Scholar
  53. 53.
    Padmanabhan R. Etiology, pathogenesis and prevention of neural tube defects. Congenit Anom (Kyoto). 2006;46(2):55–67.CrossRefGoogle Scholar
  54. 54.
    Yazdy MM, Liu S, Mitchell AA, Werler MM. Maternal dietary glycemic intake and the risk of neural tube defects. Am J Epidemiol. 2010;171(4):407–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Eurocat. A review of environmental risk factors for congenital anomalies. Ulters: Eurocat; 2004.Google Scholar
  56. 56.
    Shaw GM, Quach T, Nelson V, et al. Neural tube defects associated with maternal periconceptional dietary intake of simple sugars and glycemic index. Am J Clin Nutr. 2003;78(5):972–8.PubMedGoogle Scholar
  57. 57.
    Vujkovic M, Steegers EA, Looman CW, Ocké MC, van der Spek PJ, Steegers-Theunissen RP. The maternal Mediterranean dietary pattern is associated with a reduced risk of spina bifida in the offspring. BJOG. 2009;116(3):408–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Carmichael SL, Yang W, Feldkamp ML, et al. Reduced risks of neural tube defects and orofacial clefts with higher diet quality. Arch Pediatr Adolesc Med. 2012;166(2):121–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Jovanovic-Peterson L, Peterson CM. Abnormal metabolism and the risk of birth defects with emphasis on diabetes. Ann N Y Acad Sci. 1993;678:228–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Wentzel P, Wentzel CR, Gareskog MB, Eriksson UJ. Induction of embryonic dysmorphogenesis by high glucose concentration, disturbed inositol metabolism, and inhibited protein kinase C activity. Teratology. 2001;63:193–201.PubMedCrossRefGoogle Scholar
  61. 61.
    van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ. Folate, homocysteine and neural tube defects: an overview. Exp Biol Med. 2001;226:243–70.Google Scholar
  62. 62.
    Sanfélix-Gimeno G, Ferreros I, Librero J, Peiró S. [Characterization of folate supplementation in pregnancy, based on a combination of health information systems]. Gac Sanit. 2012;26(6):512–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Eichholzer M, Tönz O, Zimmermann R. Folic acid: a public-health challenge. Lancet. 2006;367:1352–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Ray JG, Meier C, Vermeulen MJ, Boss S, Wyatt PR, Cole DE. Association of neural tube defects and folic acid food fortification in Canada. Lancet. 2002;360(9350):2047–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Dietrich M, Brown CJ, Block G. The effect of folate fortification of cereal-grain products on blood folate status, dietary folate intake, and dietary folate sources among adult non-supplement users in the United States. J Am Coll Nutr. 2005;24(4): 266–74.PubMedCrossRefGoogle Scholar
  66. 66.
    EUROCAT. Prevention of neural tube defects by periconceptional folic acid supplementation in Europe. Ulster: EUROCAT; 2009.Google Scholar
  67. 67.
    Armstrong NC, Pentieva K, McPartlin J, Strain JJ. Comparison of the homocysteine-lowering effect of folic acid-fortified bread versus folic acid tablets. In: Homocysteine metabolism 3rd international conference, Naples; 2001. p. 162.Google Scholar
  68. 68.
    Tricon S, Willers S, Smit HA, Burney PG, Devereux G, Frew AJ, et al. Nutrition and allergic disease. Clin Exp Allergy Rev. 2006;6(5):117–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Clara L. Rodríguez-Bernal
    • 1
  • Marisa Rebagliato
    • 2
  • Leda Chatzi
    • 3
  • Clara Cavero Carbonell
    • 1
  • Carmen Martos
    • 1
  • Ferran Ballester
    • 1
  1. 1.Centro Superior de Investigación en Salud Pública (Center for Public Health Research) CSISP, Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP)ValenciaSpain
  2. 2.Public Health Board, Conselleria de SanitatSpanish Consortium for Research on Epidemiology and Public Health (CIBERESP)ValenciaSpain
  3. 3.Department of Social MedicineUniversity of CreteHeraklionGreece

Personalised recommendations