Skip to main content

Spike Train Distance

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Spike metric

Definition

A “spike train distance” is a means for comparing two sequences of stereotyped events. The term “spike metric” refers to a spike train distance that, additionally, has the formal mathematical properties of a metric. Spike train distances have broad application in neuroscience, since the action potentials emitted by a neuron or set of neurons can be regarded as a sequence of stereotyped events; we briefly survey these applications here.

Detailed Description

Spike train distances are rules for assigning a notion of distance, or dissimilarity, to pairs of event sequences. In contrast to most quantitative approaches to the analysis of scientific data, the framework of spike train distances does not make the implicit assumption that the objects of interest (i.e., the event sequences) can be thought of as vectors. In many cases, including the earliest examples of spike train distances (van Rossum 2001; Victor and Purpura 1996, 1997), these distances also...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Accomando AW, Vargas-Irwin CE, Simmons JA (2018) Spike train SIMilarity Space (SSIMS) method detects effects of obstacle proximity and experience on temporal patterning of bat biosonar. Front Behav Neurosci 12:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronov D, Victor JD (2004) Non-Euclidean properties of spike train metric spaces. Phys Rev E Stat Nonlin Soft Matter Phys 69:061905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aronov D, Reich DS, Mechler F, Victor JD (2003) Neural coding of spatial phase in V1 of the macaque monkey. J Neurophysiol 89:3304–3327

    Article  PubMed  Google Scholar 

  • Brasselet R, Johansson R, Arleo A (2009) Optimal context separation of spiking haptic signals by second-order somatosensory neurons. In Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, pp 180–188.

    Google Scholar 

  • Brasselet R, Johansson RS, Arleo A (2011a) Isometric coding of spiking haptic signals by peripheral somatosensory neurons. In: Proceedings of the International Work-Conference on Artificial Neural Networks, Malaga, Spain. Springer, Heidelberg, Germany, pp 528–536

    Chapter  Google Scholar 

  • Brasselet R, Johansson RS, Arleo A (2011b) Quantifying neurotransmission reliability through metrics-based information analysis. Neural Comput 23:852–881

    Article  PubMed  Google Scholar 

  • Chicharro D, Kreuz T, Andrzejak RG (2011) What can spike train distances tell us about the neural code? J Neurosci Methods 199:146–165

    Article  PubMed  Google Scholar 

  • Ciba M, Isomura T, Jimbo Y, Bahmer A, Thielemann C (2018) Spike-contrast: a novel time scale independent and multivariate measure of spike train synchrony. J Neurosci Methods 293:136–143

    Article  PubMed  Google Scholar 

  • Clemens J, Kutzki O, Ronacher B, Schreiber S, Wohlgemuth S (2011) Efficient transformation of an auditory population code in a small sensory system. Proc Natl Acad Sci U S A 108:13812–13817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutts CS, Eglen SJ (2014) Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves. J Neurosci 34:14288–14303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauwels J, Vialatte F, Weber T, Cichocki A (2009) Quantifying statistical interdependence by message passing on graphs. Part I. One-dimensional point processes. Neural Comput 21:2203–2268

    Article  CAS  PubMed  Google Scholar 

  • Diez DM, Schoenberg FP, Woody CD (2012) Algorithms for computing spike time distance and point process prototypes with application to feline neuronal responses to acoustic stimuli. J Neurosci Methods 203:186–192

    Article  PubMed  Google Scholar 

  • Dubbs AJ, Seiler BA, Magnasco MO (2010) A fast L(p) spike alignment metric. Neural Comput 22:2785–2808

    Article  PubMed  Google Scholar 

  • Florian RV (2012) The chronotron: a neuron that learns to fire temporally precise spike patterns. PLoS One 7:e40233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas JS, White JA (2002) Frequency selectivity of Layer II stellate cells in the medial entorhinal cortex. J Neurophysiol 88:2422–2429

    Article  PubMed  Google Scholar 

  • Houghton C (2009) Studying spike trains using a van Rossum metric with a synapse-like filter. J Comput Neurosci 26:149–155

    Article  PubMed  Google Scholar 

  • Houghton C (2015) Calculating mutual information for spike trains and other data with distances but no coordinates. R Soc Open Sci 2:140391

    Article  PubMed  PubMed Central  Google Scholar 

  • Houghton C (2019) Calculating the mutual information between two spike trains. Neural Comput 31:330–343

    Article  PubMed  Google Scholar 

  • Houghton C, Kreuz T (2012) On the efficient calculation of van Rossum distances. Network 23:48–58

    Article  PubMed  Google Scholar 

  • Houghton C, Sen K (2008) A new multineuron spike train metric. Neural Comput 20:1495–1511

    Article  PubMed  PubMed Central  Google Scholar 

  • Houghton C, Victor JD (2011) Measuring representational distances – the spike train metrics approach. In: Kriegeskorte N, Kreiman G (eds) Understanding visual population coes – towards a common multivariate framework for cell recording and functional imaging. MIT Press, Cambridge, MA

    Google Scholar 

  • Humphries MD (2011) Spike-train communities: finding groups of similar spike trains. J Neurosci 31:2321–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries MD (2017) Dynamical networks: finding, measuring, and tracking neural population activity using network science. Netw Neurosci 1:324–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter JD, Milton G (2003) Amplitude and frequency dependence of spike timing: implications for dynamic regulation. J Neurophysiol 90:387–394

    Article  PubMed  Google Scholar 

  • Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for quantitative assessment of simple neuron models. J Neurosci Methods 169:417–424

    Article  PubMed  Google Scholar 

  • Julienne H, Houghton C (2013) A simple algorithm for averaging spike trains. J Math Neurosci 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kameneva T, Abramian M, Zarelli D, Nesic D, Burkitt AN et al (2015) Spike history neural response model. J Comput Neurosci 38:463–481

    Article  PubMed  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of the Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Article  Google Scholar 

  • Kozachenko LF, Leonenko NN (1987) Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii 23:9–16

    Google Scholar 

  • Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165:151–161

    Article  PubMed  Google Scholar 

  • Kreuz T, Chicharro D, Andrzejak RG, Haas JS, Abarbanel HD (2009) Measuring multiple spike train synchrony. J Neurosci Methods 183:287–299

    Article  PubMed  Google Scholar 

  • Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F (2013) Monitoring spike train synchrony. J Neurophysiol 109:1457–1472

    Article  PubMed  Google Scholar 

  • Kreuz T, Mulansky M, Bozanic N (2015) SPIKY: a graphical user interface for monitoring spike train synchrony. J Neurophysiol 113:3432–3445

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreuz T, Satuvuori E, Pofahl M, Mulansky M (2017) Leaders and followers: Quantifying consistency in spatio-temporal propagation patterns. New J Phys 19(043028):1–23

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage, Beverly Hills

    Book  Google Scholar 

  • Li X, Ouyang G, Usami A, Ikegaya Y, Sik A (2010) Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys J 98:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes-dos-Santos V, Panzeri S, Kayser C, Diamond ME, Quian Quiroga R (2015) Extracting information in spike time patterns with wavelets and information theory. J Neurophysiol 113:1015–1033

    Article  PubMed  Google Scholar 

  • Lynch EP, Houghton CJ (2015) Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data. Front Neuroinform 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyttle D, Fellous JM (2011) A new similarity measure for spike trains: sensitivity to bursts and periods of inhibition. J Neurosci Methods 199:296–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulansky M, Bozanic N, Sburlea A, Kreuz T (2015) A guide to time-resolved and parameter-free measures of spike train synchrony. In: IEEE Proceeding on event-based control, communication, and signal processing (EBCCSP), S 1–8

    Google Scholar 

  • Narayan R, Grana G, Sen K (2006) Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol 96:252–258

    Article  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  PubMed  Google Scholar 

  • Newman GI, Aggarwal V, Schieber MH, Thakor NV (2011) Identifying neuron communities during a reach and grasp task using an unsupervised clustering analysis. Conf Proc IEEE Eng Med Biol Soc 2011:6401–6404

    PubMed Central  Google Scholar 

  • Quian Quiroga R, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 66:041904

    CAS  Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  CAS  PubMed  Google Scholar 

  • Rusu CV, Florian RV (2014) A new class of metrics for spike trains. Neural Comput 26:306–348

    Article  PubMed  Google Scholar 

  • Satuvuori E, Kreuz T (2018) Which spike train distance is most suitable for distinguishing rate and temporal coding? J Neurosci Methods 299:22–33

    Article  PubMed  Google Scholar 

  • Satuvuori E, Mulansky M, Bozanic N, Malvestio I, Zeldenrust F et al (2017) Measures of spike train synchrony for data with multiple time scales. J Neurosci Methods 287:25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52–54:925–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellers P (1974) On the theory and computation of evolutionary distances. SIAM J Appl Math 26:787–793

    Article  Google Scholar 

  • Sen K, Jorge-Rivera JC, Marder E, Abbott LF (1996) Decoding synapses. J Neurosci 16:6307–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira AH, Nelken I (2013) Binless estimation of mutual information in metric spaces. In: DiLorenzo P, Victor J (eds) Spike timing: mechanisms and function. FL, Boca Raton, pp 121–136

    Chapter  Google Scholar 

  • Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  CAS  PubMed  Google Scholar 

  • Tezuka T (2014) Spike train kernels for multiple neuron recordings. In: IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE Signal Processing Society, Piscataway, NJ, USA, pp 5994–98

    Google Scholar 

  • Tezuka T (2018) Multineuron spike train analysis with R-convolution linear combination kernel. Neural Netw 102:67–77

    Article  PubMed  Google Scholar 

  • van der Maaten L, Hinton G (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  • van Rossum MC (2001) A novel spike distance. Neural Comput 13:751–763

    Article  PubMed  Google Scholar 

  • Vargas-Irwin CE, Brandman DM, Zimmermann JB, Donoghue JP, Black MJ (2015) Spike train SIMilarity Space (SSIMS): a framework for single neuron and ensemble data analysis. Neural Comput 27:1–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Victor JD (2005) Spike train metrics. Curr Opin Neurobiol 15:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric- space analysis. J Neurophysiol 76:1310–1326

    Article  CAS  PubMed  Google Scholar 

  • Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and application. Network 8:127–164

    Article  Google Scholar 

  • Victor JD, Purpura KP (2010) Spike Metrics. In: Rotter S, Gruen S (eds) Analysis of parallel spike trains. Springer, New York/Heidelberg

    Google Scholar 

  • Victor JD, Goldberg DH, Gardner D (2007) Dynamic programming algorithms for comparing multineuronal spike trains via cost-based metrics and alignments. J Neurosci Methods 161:351–360

    Article  PubMed  Google Scholar 

  • Wu W, Srivastava A (2011) An information-geometric framework for statistical inferences in the neural spike train space. J Comput Neurosci 31:725–748

    Article  PubMed  Google Scholar 

Further Reading

  • Dubbs AJ, Seiler BA, Magnasco MO (2010) A fast L(p) spike alignment metric. Neural Comput 22(11):2785–2808

    Article  PubMed  Google Scholar 

  • Houghton C, Victor JD (2011) Measuring representational distances – the spike train metrics approach. In: Kriegeskorte N, Kreiman G (eds) Understanding visual population codes – towards a common multivariate framework for cell recording and functional imaging. MIT Press, Cambridge, MA

    Google Scholar 

  • Kreuz T (2011) Measures of spike train synchrony. Scholarpedia 6(10):11934

    Article  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J MolBiol 48(3):443–453

    Article  CAS  Google Scholar 

  • Van Rossum MC (2001) A novel spike distance. Neural Comput 13(4):751–763

    Article  PubMed  Google Scholar 

  • Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and application. Network 8:127–164

    Article  Google Scholar 

  • Victor JD, Purpura KP (2010) Spike metrics. In: Rotter S, Gruen S (eds) Analysis of parallel spike trains. Springer, New York/Heidelberg

    Google Scholar 

Download references

Acknowledgment

Supported by NIH EY07977 to JDV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Victor .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kreuz, T., Houghton, C., Victor, J.D. (2020). Spike Train Distance. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_409-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_409-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Spike Train Distance
    Published:
    11 December 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_409-2

  2. Original

    Spike Train Distance
    Published:
    20 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_409-1