Skip to main content

Effect of Dietary Phytochemicals on Metabolic Syndrome and Neurological Disorders

  • Chapter
  • First Online:
Metabolic Syndrome

Abstract

The widespread prevalence and deleterious effects of MetS have become a major public health challenge as it is associated with the development of type II diabetes, cardiovascular diseases, and age-related neurological disorders. This situation is caused by the consumption of Western diet, which is enriched in saturated and n-6 fatty acids and cholesterol. These dietary components may be responsible for induction of insulin resistance and maintenance of oxidative stress, and inflammation. In contrast, the consumption of diet enriched in fruits (polyphenols), vegetables (fiber), dry fruits (n-3 fatty acids, proteins of plant origin), and whole grains sensitizes insulin and decreases oxidative stress and inflammation by lowering levels of ROS, AGEs, lipid mediators, and cytokines. Thus, lifestyle modifications involving changes in diet and exercise may produce promising effects in managing MetS, diabetes, cardiovascular disease risk, and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Kader R, Hauptmann S, Keil U, Scherping I, Leuner K, Eckert A, Müller WE (2007) Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761®). Pharmacol Res 56:493–502

    CAS  PubMed  Google Scholar 

  • Adisakwattana S, Sompong W, Meeprom A, Ngamukote S, Yibchok-Anun S (2012) Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int J Mol Sci 13:1778–1789

    CAS  PubMed  Google Scholar 

  • Aggarwal BB (2010) Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 30:173–199

    CAS  PubMed  Google Scholar 

  • Agrawal R, Gomez-Pinilla F (2012) “Metabolic syndrome” in the brain: Deficiency in omega-3-fatty acid exacerbates dysfunctions in insulin receptor signaling and cognition. J Physiol 590:2485–2499

    CAS  PubMed  Google Scholar 

  • Amagase H (2006) Clarifying the real bioactive constituents of garlic. J Nutr 136:716S–725S

    CAS  PubMed  Google Scholar 

  • Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76:1590–1611

    CAS  PubMed  Google Scholar 

  • Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186

    CAS  PubMed  Google Scholar 

  • Anton S, Melville L, Rena G (2007) Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 19:378–383

    CAS  PubMed  Google Scholar 

  • Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi T, Azizi F (2005) Beneficial effects of a dietary approaches to stop hypertension eating plan on features of the metabolic syndrome. Diabetes Care 28:2823–2831

    CAS  PubMed  Google Scholar 

  • Banerjee KS, Moulik SK (2000) Effect of garlic on cardiovascular disorders: a review. Nutri J 1:1–14

    Google Scholar 

  • Baran SE, Campbell AM, Kleen JK, Foltz CH, Wright RL, Diamond DM, Conrad CD (2005) Combination of high fat diet and chronic stress retracts hippocampal dendrites. Neuroreport 16:39–43

    PubMed  Google Scholar 

  • Barros RP, Machado UF, Gustafsson JA (2006a) Estrogen receptors: new players in diabetes mellitus. Trends Mol Med 12:425–431

    CAS  PubMed  Google Scholar 

  • Barros RP, Machado UF, Warner M, Gustafsson JA (2006b) Muscle GLUT4 regulation by estrogen receptors ERbeta and ERalpha. Proc Natl Acad Sci USA 103:1605–1608

    CAS  PubMed  Google Scholar 

  • Bas O, Songur A, Sahin O, Mollaoglu H, Ozen OA, Yaman M, Eser O, Fidan H, Yagmurca M (2007) The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int 50:548–554

    CAS  PubMed  Google Scholar 

  • Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R (2000) The Ginkgo biloba extract (EGb 761®) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci 12:1882–1891

    CAS  PubMed  Google Scholar 

  • Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159–166

    CAS  PubMed  Google Scholar 

  • Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations and Alzheimer’s disease. J Lipid Res 50(Suppl):S400–405

    PubMed  Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, Cole GM, Frautschy SA (2008) Curcumin structure function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326:196–208

    CAS  PubMed  Google Scholar 

  • Belalcazar LM, Reboussin DM, Haffner SM, Reeves RS, Schwenke DC, Hoogeveen RC, Pi-Sunyer FX, Ballantyne CM, Look AHEAD (Action for Health in Diabetes) Obesity, Inflammation, and Thrombosis Research Group (2009) Marine omega-3 fatty acid intake: associations with cardiometabolic risk and response to weight loss intervention in the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 33:197–199

    Google Scholar 

  • Belayev L, Khoutorova L, Atkins KD, Eady TN, Hong S, Lu Y, Obenaus A, Bazan NG (2011) Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res 2:33–41

    CAS  PubMed  Google Scholar 

  • Bent S, Ko R (2004) Commonly used herbal medicines in the United States: a review. Am J Med 116:478–485

    PubMed  Google Scholar 

  • Bierhaus A, Haslbeck KM, Humpert PM, Liliensiek B, Dehmer T, Morcos M, Sayed AA, Andrassy M, Schiekofer S, Schneider JG, Schulz JB, Heuss D, Neundörfer B, Dierl S, Huber J, Tritschler H, Schmidt AM, Schwaninger M, Haering HU, Schleicher E, Kasper M, Stern DM, Arnold B, Nawroth PP (2004) Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 114:1741–51

    CAS  PubMed  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J 22:1213–1225

    CAS  PubMed  Google Scholar 

  • Breen DM, Sanli T, Giacca A, Tsiani E (2008) Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun 374:117–122

    CAS  PubMed  Google Scholar 

  • Broadhurst CL, Polansky MM, Anderson RA (2000) Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 48:849–852

    CAS  PubMed  Google Scholar 

  • Brown AL, Lane J, Coverly J, Stocks J, Jackson S, Stephen A, Bluck L, Coward A, Hendrickx H (2008) Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br J Nutri 101:886–894

    Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    CAS  PubMed  Google Scholar 

  • Bruckdorfer KR, Kang SS, Yudkin J (1973) Plasma concentrations of insulin, corticosterone, lipids and sugars in rats fed on meals with glucose and fructose. Proc Nutr Soc 32:12–13

    Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Howard BJ, Yatin S, Allen KL, Carney JM (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 94:674–78

    CAS  PubMed  Google Scholar 

  • Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea – a review. J Am Coll Nutr 25:79–99

    CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783

    Google Scholar 

  • Calon F, Lim GP, Yang FS, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem NJ, Ashe KH, Frautschy SA, Cole GM (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645

    CAS  PubMed  Google Scholar 

  • Cao H., Hininger-Favier I., Kelly M.A., Benaraba R., Dawson H.D., Coves S., Roussel A.M., and Anderson R.A. (2007a). Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J Agric Food Chem. 55:6372–6378

    CAS  PubMed  Google Scholar 

  • Cao D., Yang B., Hou L., Xu J., Xue R., Sun L., Zhou C., and Liu Z. (2007b). Chronic daily administration of ethyl docosahexaenoate protects against gerbil brain ischemic damage through reduction of arachidonic acid liberation and accumulation. J. Nutr. Biochem. 18:297–304

    CAS  PubMed  Google Scholar 

  • Cao H, Graves DJ, Anderson RA (2010) Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes. Phytomedicine 17:1027–1032

    CAS  PubMed  Google Scholar 

  • Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629

    CAS  PubMed  Google Scholar 

  • Chao J, Yu MS, Ho HS, Wang M, Chang RC (2006) Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Rad Biol Med 45:1019–1026

    Google Scholar 

  • Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD (2002) Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738

    PubMed  Google Scholar 

  • Chen PC, Wheeler DS, Malhotra V, Odoms K, Denenberg AG, Wong HR (2002) A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits I kappa B kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation 26:233–241

    CAS  PubMed  Google Scholar 

  • Cole GM, Ma QL, Frautschy SA (2009) Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids 81:213–221

    CAS  PubMed  Google Scholar 

  • Colín-González A.L., Ortiz-Plata A., Villeda-Hernández J., Barrera D., Molina-Jijón E., Pedraza-Chaverrí J., and Maldonado P.D. (2011). Aged Garlic Extract Attenuates Cerebral Damage and Cyclooxygenase-2 Induction after Ischemia and Reperfusion in Rats. Plant Foods Hum Nutr 66:348–354

    Google Scholar 

  • Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149

    CAS  PubMed  Google Scholar 

  • Couturier K, Batandier C, Awada M, Hininger-Favier I, Canini F, Anderson RA, Leverve X, Roussel AM (2010) Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Arch Biochem Biophys 501:158–161

    CAS  PubMed  Google Scholar 

  • Crawford P (2009) Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med 22:507–512

    PubMed  Google Scholar 

  • Dansen TB, Smits LM, van Triest MH, de Keizer PL, van Leenen D, Koerkamp MG, Szypowska A, Meppelink A, Brenkman AB, Yodoi J, Holstege FC, Burgering BM (2009) Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 5:664–672

    CAS  PubMed  Google Scholar 

  • Das S, Das DK (2007) Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets 6:168–173

    CAS  PubMed  Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction. Testing and clinical relevance Circulation 115:1285–1295

    Google Scholar 

  • Delattre AM, Kiss A, Szawka RE, Anselmo-Franci JA, Bagatini PB, Xavier LL, Rigon P, Achaval M, Iagher F, de David C, Marroni NA, Ferraz AC (2010) Evaluation of chronic omega-3 fatty acids supplementation on behavioral and neurochemical alterations in 6-hydroxydopamine-lesion model of Parkinson’s disease. Neurosci Res 66:256–264

    Google Scholar 

  • Demarin V, Lisak M, Morovic S (2011) Mediterranean diet in healthy lifestyle and prevention of stroke. Acta Clin Croat 50:67–77

    PubMed  Google Scholar 

  • Deng J-Y, Hsieh P-S, Huang J-P, Lu L-S, Hung L-M (2008) Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and -independent pathways. Diabetes 57:1814–1823

    CAS  PubMed  Google Scholar 

  • Dias GP, Cavegn N, Nix A, do Nascimento Bevilaqua MC, Stangl D, Zainuddin MS, Nardi AE, Gardino PF, Thuret S (2012) The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. Oxid Med Cell Longev 2012:541971

    PubMed  Google Scholar 

  • Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S, Müller WE (2003) Effects of EGb 761® Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry 36(Suppl 1):S15–S23

    CAS  PubMed  Google Scholar 

  • Ejaz A, Wu D, Kwan P, Meydani M (2009) Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139:919–925

    CAS  PubMed  Google Scholar 

  • Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812

    CAS  PubMed  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    CAS  PubMed  Google Scholar 

  • Farooqui AA (2009) Beneficial effects of fish oil human brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2012a) Generation of reactive oxygen species in the brain: signaling for neural cell survival or suicide. In: Farooqui T, Farooqui AA (eds) Oxidative stress in vertebrates and invertebrates. Wiley-Blackwell, Hoboken, NJ, pp 3–15

    Google Scholar 

  • Farooqui AA (2012b) Phytochemicals, signal transduction, and neurological disorders. Springer, New York

    Google Scholar 

  • Farooqui AA (2012c) n-3 Fatty acid-derived lipid mediators in the brain: new weapons against oxidative stress and inflammation. Curr Med Chem 19:532–543

    CAS  PubMed  Google Scholar 

  • Farooqui T, Farooqui AA (2010) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 130:203–215

    Google Scholar 

  • Farooqui AA, Farooqui T (2011) Perspective and direction for future research on phytochemicals. In: Farooqui AA, Farooqui T (eds) Phytochemicals and human health: pharmacological and molecular aspects. Nova Science Publishers, Inc, New York, pp 501–513

    Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York

    Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007a) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA, Chen P, Farooqui T (2007b) Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain Res Rev 56:443–471

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762

    CAS  PubMed  Google Scholar 

  • Fehske CJ, Leuner K, Müller WE (2009) Ginkgo biloba extract (EGb 761®) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res 60:68–73

    CAS  PubMed  Google Scholar 

  • Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, Vedin I, Vessby B, Wahlund LO, Palmblad J (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol 63:1402–1408

    PubMed  Google Scholar 

  • Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, Vassar R, Segal D, Gazit E, Frenkel D, Ovadia M (2011) Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models. PLoS One 6:e16564

    CAS  PubMed  Google Scholar 

  • Garrel DR, Razi M, Lariviere F, Jobin N, Naman N, Emptoz-Bonneton A, Pugeat MM (1995) Improved clinical status and length of care with low-fat nutrition support in burn patients. J Parenter Enteral Nutr 19:482–491

    CAS  Google Scholar 

  • Gershwin ME, Borchers AT, Keen CL, Hendler S, Hagie F, Greenwood MR (2010) Public safety and dietary supplementation. Ann N Y Acad Sci 1190:104–117

    PubMed  Google Scholar 

  • Ghosh S, Novak EM, Innis SM (2007) Cardiac proinflammatory pathways are altered with different dietary n-6 linoleic to n-3 α-linolenic acid ratios in normal, fat-fed pigs. Am J Physiol Heart Circ Physiol 293:H2919–H2927

    CAS  PubMed  Google Scholar 

  • Giri RK, Selvaraj SK, Kalra VK (2003) Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. J Immunol 170:5281–5294

    CAS  PubMed  Google Scholar 

  • Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58:2095–2099

    CAS  PubMed  Google Scholar 

  • Haffner SM (2006) The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol 97:3A–11A

    CAS  PubMed  Google Scholar 

  • Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R (2004) Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 141:997–1005

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Hossain S, Shimada T, Shido O (2006) Docosahexaenoic acid-induced protective effect against impaired learning in amyloid β-infused rats is associated with increased synaptosomal membrane fluidity. Clin Exp Pharmacol Physiol 33:934–939

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe Y, Fujiwara H, Gamoh S, Miyazawa T, Arai H, Shimada T, Shido O (2008) Docosahexaenoic acid disrupts in vitro amyloid beta fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer's disease model rats. J Neurochem 107:1634–1646

    CAS  PubMed  Google Scholar 

  • He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ, Willett WC, Ascherio A (2002) Fish consumption and risk of stroke in men. JAMA 288:3130–3136

    CAS  PubMed  Google Scholar 

  • Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc Natl Acad Sci USA 97:12729–12734

    CAS  PubMed  Google Scholar 

  • Henry LA, Witt DM (2002) Resveratrol: phytoestrogen effects on reproductive physiology and behavior in female rats. Horm Behav 41:220–228

    CAS  PubMed  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    CAS  PubMed  Google Scholar 

  • Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Yun YP, Lee BM, Kim PY (2001) Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res 888:11–18

    CAS  PubMed  Google Scholar 

  • Hossain MS, Hashimoto M, Masumura S (1998) Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci Lett 244:157–160

    CAS  PubMed  Google Scholar 

  • Hossain MS, Hashimoto M, Gamoh S, Masumura S (1999) Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J Neurochem 72:1133–1138

    CAS  PubMed  Google Scholar 

  • Huynh NN, Chin-Dusting J (2006) Amino acids, arginase and nitric oxide in vascular health. Clin Exp Pharmacol Physiol 33:1–8

    CAS  PubMed  Google Scholar 

  • Iso H, Rexrode KM, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Hennekens CH, Willett WC (2001) Intake of fish and omega-3 fatty acids and risk of stroke in women. JAMA 285:304–312

    CAS  PubMed  Google Scholar 

  • Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34:1100–1110

    CAS  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Willis LM (2009) Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr 139:1813S–1817S

    CAS  PubMed  Google Scholar 

  • Kaplan S, Bisleri G, Morgan JA, Cheema FH, Oz MC (2005) Resveratrol, a natural red wine polyphenol, reduces ischemia-reperfusion-induced spinal cord injury. Ann Thorac Surg 80:2242–2249

    PubMed  Google Scholar 

  • Kasper S, Schubert H (2009) Ginkgo-Spezialextrakt EGb 761® in der Behandlung der Demenz: Evidenz für Wirksamkeit und Verträglichkeit [Ginkgo biloba extract EGb 761® in the treatment of dementia: evidence of efficacy and tolerability]. Fortschr Neurol Psychiatr 77:494–506

    CAS  PubMed  Google Scholar 

  • Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26:3215–3218

    PubMed  Google Scholar 

  • Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson's disease. Brain Res 1328:139–151

    CAS  PubMed  Google Scholar 

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Pulgserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179

    CAS  PubMed  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    CAS  PubMed  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  • King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT (2006) Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 26:4672–4680

    CAS  PubMed  Google Scholar 

  • Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, van Staveren WA (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292:1433–1439

    PubMed  Google Scholar 

  • Koch HP, Lawson LD (1996) Garlic: the science and therapeutic application of Allium sativum L. and related species, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Koh SH, Kim SH, Kwon H, Kim JG, Kim JH, Yang KH, Kim J, Kim SU, Yu HJ, Do BR, Kim KS, Jung HK (2004) Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal differentiated N18D3 cells. Neurotoxicology 25:793–802

    CAS  PubMed  Google Scholar 

  • Költringer P, Langsteger W, Eber O (1995) Dose-dependent hemorheological effects and microcirculatory modifications following intravenous administration of Ginkgo biloba special extract EGb 761®. Clin Hemorheol 15:649–656

    Google Scholar 

  • Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology (Berl) 201:435–442

    CAS  Google Scholar 

  • Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. ScientificWorld J 9:1233–1241

    CAS  Google Scholar 

  • Kuner P, Schubenel R, Hertel C (1998) Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells. J Neurosci Res 54:798–804

    CAS  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    CAS  PubMed  Google Scholar 

  • Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor foe advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–14

    CAS  PubMed  Google Scholar 

  • Lang-Lazdunski L, Biondeau N, Jarretou G, Heurteaux C (2003) Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J Vasc Surg 38:564–575

    PubMed  Google Scholar 

  • Lankinen M, Schwab U, Kolehmainen M, Paananen J, Poutanen K, Mykkänen H, Seppänen-Laakso T, Gylling H, Uusitupa M, Orešič M (2011) Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study. PLoS One 6:e22646

    CAS  PubMed  Google Scholar 

  • Lê KA, Tappy L (2006) Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9(4):469–475

    PubMed  Google Scholar 

  • Lee S, Suh S, Kim S (2000) Protective effects of the green tea polyphenol (−)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287:191–194

    CAS  PubMed  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    CAS  PubMed  Google Scholar 

  • Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 17:952–954

    CAS  PubMed  Google Scholar 

  • Li Z, Kaplan ML, Hatchey DL (2000) Hepatic microsomal and peroxisomal docosahexaenoate biosynthesis during piglet development. Lipids 35:1325–1333

    CAS  PubMed  Google Scholar 

  • Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104:1322–1331

    CAS  PubMed  Google Scholar 

  • Li C, Allen A, Kwagh J, Doliba NM, Qin W, Najafi H, Collins HW, Matschinsky FM, Stanley CA, Smith TJ (2006) Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 281:10214–10221

    CAS  PubMed  Google Scholar 

  • Liu A, Lou H, Zhao L, Fan P (2006) Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40:720–727

    CAS  PubMed  Google Scholar 

  • Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B (2011) Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 1374:100–109

    CAS  PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    CAS  PubMed  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009a) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    CAS  PubMed  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda QJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautchy SA, Cole GM (2009b) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    CAS  PubMed  Google Scholar 

  • Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MB (2008) Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr 138:1578S–1583S

    CAS  PubMed  Google Scholar 

  • Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29:632–639

    CAS  PubMed  Google Scholar 

  • Mattson MP, Son TG, Camandola S (2007) Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 5:174–186

    CAS  PubMed  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    CAS  PubMed  Google Scholar 

  • McEwen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann NY Acad Sci 933:265–277

    CAS  PubMed  Google Scholar 

  • Michael-Titus AT (2007) Omega-3 fatty acids and neurological injury. Prost Leukot Essent Fatty Acids 77:295–300

    CAS  Google Scholar 

  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716

    CAS  PubMed  Google Scholar 

  • Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120:888–896

    CAS  PubMed  Google Scholar 

  • Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    CAS  PubMed  Google Scholar 

  • Moon HS, Lee HG, Choi YJ, Kim TG, Cho CS (2007) Proposed mechanisms of (−)-epigallocatechin-3-gallate for anti-obesity. Chem Biol Interact 167:85–89

    CAS  PubMed  Google Scholar 

  • Munch G, Thome J, Foley P, Schinzel R, Riederer P (2000) Advanced glycation end products in ageing and Alzheimer’s disease. Brain Res Rev 23:134–43

    Google Scholar 

  • Murase T, Misawa K, Haramizu S, Hase T (2009) Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 78:78–84

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Acosta JH, Patel JM, Johnson RJ (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol 2006(290):625–631

    Google Scholar 

  • Okada M, Amamoto T, Tomonaga M, Kawachi A, Yazawa K, Mine K, Fujiwara M (1996) The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neuroscience 71:17–25

    CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Hamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    CAS  PubMed  Google Scholar 

  • Padiya R, Khatua TN, Bague R, Kuncha M, Banerjee SK (2011) Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr Metab (Lond) 8:53

    CAS  Google Scholar 

  • Pan T, Fei J, Zhou X, Jankovic J, Le W (2003) Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury. Life Sci 72:1073–1083

    CAS  PubMed  Google Scholar 

  • Panickar KS, Polansky MM, Graves DJ, Urban JF Jr, Anderson RA (2012) A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemia-like injury in vitro. Neuroscience 202:87–98

    CAS  PubMed  Google Scholar 

  • Papaioannou N, Tooten PC, van Ederen AM, Bohl JR, Rofina J, Tsangaris T, Gruys E (2001) Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid 8:11–21

    CAS  PubMed  Google Scholar 

  • Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, Kim SS, Ha J (2007) Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 39:222–229

    CAS  PubMed  Google Scholar 

  • Patel J, Iyer A, Brown L (2009) Evaluation of the chronic complications of diabetes in a high fructose diet in rats. Ind J Biochem Biophys 46:66–72

    CAS  Google Scholar 

  • Peterson DW, George RC, Scaramozzino F, LaPointe NE, Anderson RA, Graves DJ, Lew J (2009) Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro. J Alzheimers Dis 17:585–597

    CAS  PubMed  Google Scholar 

  • Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim JA, Quon MJ, Montagnani M (2007) EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 292:E1378–E1387

    CAS  PubMed  Google Scholar 

  • Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y (2004) Cinnamon extract prevents the insulin resistance induced by a high-fructose diet. Horm Metab Res 36:119–125

    CAS  PubMed  Google Scholar 

  • Qin B, Polansky MM, Anderson RA (2009) Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats. Horm Metab Res 42:187–193

    PubMed  Google Scholar 

  • Qin B, Panickar KS, Anderson RA (2010) Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 4:685–693

    PubMed  Google Scholar 

  • Rahman K, Lowe GM (2006) Garlic and cardiovascular disease: a critical review. J Nutr 136:736S–740S

    CAS  PubMed  Google Scholar 

  • Ramassamy C, Christen Y, Clostre F, Costentin J (1992) The Ginkgo biloba extract, EGb 761®, increases synaptosomal uptake of 5-hydroxytryptamine: in-vitro and ex-vivo studies. J Pharm Pharmacol 44:943–945

    CAS  PubMed  Google Scholar 

  • Ray B, Chauhan NB, Lahiri DK (2011a) The "aged garlic extract:" (AGE) and one of its active ingredients S-allyl-L-cysteine (SAC) as potential preventive and therapeutic agents for Alzheimer's disease (AD). Curr Med Chem 18:3306–3313

    CAS  PubMed  Google Scholar 

  • Ray B, Chauhan NB, Lahiri DK (2011b) Oxidative insults to neurons and synapse are prevented by aged garlic extract and S-allyl-L-cysteine treatment in the neuronal culture and APP-Tg mouse model. J Neurochem 117:388–402

    CAS  PubMed  Google Scholar 

  • Reisin E (2009) The benefit of the Mediterranean-style diet in patients with newly diagnosed diabetes. Curr Hypertens Rep 12:56–8

    Google Scholar 

  • Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36:2352–2362

    Google Scholar 

  • Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214:177–187

    CAS  PubMed  Google Scholar 

  • Riviere C, Richard T, Quentin L, Krisa S, Merillon JM, Monti JP (2007) Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167

    CAS  PubMed  Google Scholar 

  • Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND (2006) Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55:928–934

    CAS  PubMed  Google Scholar 

  • Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E (2011) S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice. J Nutr Biochem 22:937–944

    CAS  PubMed  Google Scholar 

  • Roussel AM, Hininger I, Benaraba R, Ziegenfuss TN, Anderson RA (2009) Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. J Am Coll Nutr 28:16–21

    CAS  PubMed  Google Scholar 

  • Ruan H, Yang Y, Zhu X, Wang X, Chen R (2009) Neuroprotective effects of (+/−)-catechin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity in mice. Neurosci Lett 450:152–157

    CAS  PubMed  Google Scholar 

  • Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94

    CAS  PubMed  Google Scholar 

  • Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Islam F (2006) Behavioral and histologic neuroprotection of aqueous garlic extract after reversible focal cerebral ischemia. J Med Food 9:537–544

    CAS  PubMed  Google Scholar 

  • Sanmukhani J, Anovadiya A, Tripathi CB (2011) Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm 68:769–775

    CAS  PubMed  Google Scholar 

  • Sasaki N, Toki S, Chowei H, Saito T, Nakano N, Hayashi Y, Takeuchi M, Makita Z (2001) Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res 888:256–262

    CAS  PubMed  Google Scholar 

  • Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Muller-Spahn F (2003) Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology 49:380–383

    CAS  PubMed  Google Scholar 

  • Scapagnini G, Sonya V, Nader AG, Calogero C, Zella D, Fabio G (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 44:192–201

    CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Stevens B (2012) The “quad-partite” synapse: Microglia–synapse interactions in the developing and mature CNS. Glia 61:24–36

    PubMed  Google Scholar 

  • Scholl J (2012) Traditional dietary recommendations for the prevention of cardiovascular disease: do they meet the needs of our patients? Cholesterol 2012:367898

    Google Scholar 

  • Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci USA 86:2903–2907

    CAS  PubMed  Google Scholar 

  • Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161:1037–1044

    CAS  PubMed  Google Scholar 

  • Sheng X, Zhang Y, Gong Z, Huang C, Zang YQ (2008) Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res 2008:581348

    PubMed  Google Scholar 

  • Shenouda SM, Vita JA (2007) Effects of flavonoid-containing beverages and EGCG on endothelial function. J Am Coll Nutr 26:366S–372S

    CAS  PubMed  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    CAS  PubMed  Google Scholar 

  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C (2008) Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    CAS  PubMed  Google Scholar 

  • Sloane JA, Hollander W, Moss MB, Rosene DL, Abraham CR (1999) Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol Aging 20:395–405

    CAS  PubMed  Google Scholar 

  • Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994) Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76:215–224

    CAS  PubMed  Google Scholar 

  • Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. Neuromolecular Med 10:236–246

    CAS  PubMed  Google Scholar 

  • Sönmez Ü, Sönmez A, Erbil G, Tekmen I, Baykara B (2007) Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett 420:133–137

    PubMed  Google Scholar 

  • Spencer JP (2009) The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 38:1152–1161

    CAS  PubMed  Google Scholar 

  • Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14:593–605

    CAS  PubMed  Google Scholar 

  • Su HM, Bernardo L, Mirmiran M, Ma XH, Corso TN, Nathanielsz PW, Brenna JT (1999a) Bioequivalence of dietary alpha-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatr Res 45:87–93

    CAS  PubMed  Google Scholar 

  • Su HM, Bernardo L, Mirmiran M, Ma XH, Nathanielsz PW, Brenna JT (1999b) Dietary 18:3n-3 and 22:6n-3 as sources of 22:6n-3 accretion in neonatal baboon brain and associated organs. Lipids 34(Suppl):S347–S350

    CAS  PubMed  Google Scholar 

  • Takeuchi M, Bucala R, Suzuki T, Ohkubo T, Yamazaki M, Koike T, Kameda Y, Makita Z (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol 59:1094–1105

    CAS  PubMed  Google Scholar 

  • Tamura Y, Ogihara T, Uchida T, Ikeda F, Kumashiro N, Nomiyama T, Sato F, Hirose T, Tanaka Y, Mochizuki H, Kawamori R, Watada H (2007) Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappa B in db/db mice. Diabetologia 50:131–141

    CAS  PubMed  Google Scholar 

  • Tattelman E (2005) Health effects of garlic. Am Fam Physician 72:103–106

    PubMed  Google Scholar 

  • Taubes G (2008) Good calories. Fats, Carbs, and the Controversial Science of Diet and Health, AA Knopf, New York, Bad Calories

    Google Scholar 

  • Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676

    CAS  PubMed  Google Scholar 

  • van der Heide LP, Smidt MP (2005) Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 30:81–86

    PubMed  Google Scholar 

  • van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450

    PubMed  Google Scholar 

  • Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15:1840–1850

    Google Scholar 

  • Vicente Miranda H, Outeiro TF (2010) The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 221:13–25

    PubMed  Google Scholar 

  • Vignes M, Maurice T, Lanté F, Nediar M, Thethi K, Guiramand J, Recasens M (2006) Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Res 1110:102–115

    CAS  PubMed  Google Scholar 

  • Vlassara H, Fuh H, Donnelly T, Cybulsky M (1995) Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1:447–456

    CAS  PubMed  Google Scholar 

  • Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958:439–447

    CAS  PubMed  Google Scholar 

  • Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS, Talcott ST, Pasinetti GM (2006) Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer's disease. FASEB J 20:2313–2320

    CAS  PubMed  Google Scholar 

  • Wang JG, Anderson RA, Graham GM, Chu MC, Sauer MV, Guarnaccia MM, Lobo RA (2007) The effect of cinnamon extract on insulin resistance parameters in polycystic ovary syndrome: a pilot study. Fertil Steril 88:240–243

    PubMed  Google Scholar 

  • Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ (2008) Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 1210:84–91

    CAS  PubMed  Google Scholar 

  • Ward RE, Huang W, Curran OE, Priestly JV, Michael-Titus AT (2010) Docosahexaenoic acid prevents white matter damage following spinal cord injury. J Neurotrauma 27:1–12

    Google Scholar 

  • Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 97:238–243

    CAS  PubMed  Google Scholar 

  • Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726

    CAS  PubMed  Google Scholar 

  • Willett WC (2006) The Mediterranean diet: science and practice. Public Health Nutr 9:105–110

    PubMed  Google Scholar 

  • Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136:2512–2518

    CAS  PubMed  Google Scholar 

  • Wu A, Molteni R, Ying Z, Gomez-Pinilla F (2003) A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119:365–375

    CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21:1457–1467

    PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2005) Omega-3 fatty acids supplementation restores homeostatic mechanisms disrupted by traumatic brain injury. J Neurotrauma 22:1212

    Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317

    CAS  PubMed  Google Scholar 

  • Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011). Resveratrol-Activated AMPK/SIRT1/Autophagy in Cellular Models of Parkinson’s Disease. Neurosignals 19:163–174

    Google Scholar 

  • Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46

    CAS  PubMed  Google Scholar 

  • Yan SD, Stern D, Kane MD, Kuo YM, Lampert HC, Roher AE (1998) RAGE-Aβ interactions in the pathophysiology of Alzheimer’s disease. Restor Neurol Neurosci 12:167–173

    CAS  PubMed  Google Scholar 

  • Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–55

    CAS  PubMed  Google Scholar 

  • Yoshitake T, Yoshitake S, Kehr J (2010) The Ginkgo biloba extract EGb 761® and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol 159:659–668

    CAS  PubMed  Google Scholar 

  • Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, Islam F (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253

    CAS  PubMed  Google Scholar 

  • Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2010) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via anti-apoptotic mechanisms in rats. Neurochem Res 35:374–379

    CAS  PubMed  Google Scholar 

  • Zhong L, Furne JK, Levitt MD (2006) An extract of black, green, and mulberry teas causes malabsorption of carbohydrate but not of triacylglycerol in healthy volunteers. Am J Clin Nutr 84:551–555

    CAS  PubMed  Google Scholar 

  • Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA (2006) Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J Int Soc Sports Nutr 3:45–53

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Effect of Dietary Phytochemicals on Metabolic Syndrome and Neurological Disorders. In: Metabolic Syndrome. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7318-3_6

Download citation

Publish with us

Policies and ethics