Skip to main content

The Future Role of Biomarkers in Alzheimer’s Disease Diagnostics

  • Chapter
  • First Online:
Book cover Genetic Variants in Alzheimer's Disease

Abstract

Diagnosis of Alzheimer’s disease can be confirmed presently only upon post-mortem examination of amyloid plaques and neurofibrillary tangles in brain tissue. Developments in diagnostic imaging tools including MRI, PET and SPECT scans are enabling greater insight into these pathologies but these techniques are insufficient for disease stratification or early diagnosis and ideally would be employed alongside diagnostics tests for biochemical biomarkers of disease. Attempts to identify biomarkers for Alzheimer’s disease have centred on the beta amyloid and tau pathologies characteristic of disease, but advances in genomic and proteomic technologies are facilitating a more complete approach to biomarker discovery. Here we discuss the impact such technologies could potentially achieve in Alzheimer’s disease diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716

    Article  PubMed  CAS  Google Scholar 

  2. NICE (2011) Alzheimer’s disease – donepezil, galantamine, rivastigmine and memantine.http://www.nice.org.uk/ta217. Accessed on 28 Apr 2013

  3. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9(5):387–398

    Article  PubMed  CAS  Google Scholar 

  4. Grill JD, Cummings JL (2010) Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev Neurother 10(5):711–728

    Article  PubMed  CAS  Google Scholar 

  5. Williams M (2009) Progress in Alzheimer’s disease drug discovery: an update. Curr Opin Investig Drugs 10(1):23–34

    PubMed  CAS  Google Scholar 

  6. Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7):560–574

    Article  PubMed  CAS  Google Scholar 

  7. Flirski M, Sobow T (2005) Biochemical markers and risk factors of Alzheimer’s disease. Curr Alzheimer Res 2(1):47–64

    Article  PubMed  CAS  Google Scholar 

  8. Davidsson P, Sjogren M (2006) Proteome studies of CSF in AD patients. Mech Ageing Dev 127(2):133–137

    Article  PubMed  CAS  Google Scholar 

  9. Lyketsos CG, Szekely CA, Mielke MM, Rosenberg PB, Zandi PP (2008) Developing new treatments for Alzheimer’s disease: the who, what, when, and how of biomarker-guided therapies. Int Psychogeriatr 20(5):871–889

    Article  PubMed  Google Scholar 

  10. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 4(4):409–418

    Article  PubMed  CAS  Google Scholar 

  11. Yuan X, Russell T, Wood G, Desiderio DM (2002) Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis 23(7–8):1185–1196

    Article  PubMed  CAS  Google Scholar 

  12. Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ, Lin B, Goodlett DR, Taylor G, Eng J, Zhang J (2007) A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics 7(3):469–473

    Article  PubMed  CAS  Google Scholar 

  13. Roher AE, Maarouf CL, Sue LI, Hu Y, Wilson J, Beach TG (2009) Proteomics-derived cerebrospinal fluid markers of autopsy-confirmed Alzheimer’s disease. Biomarkers 14(7):493–501

    Article  PubMed  CAS  Google Scholar 

  14. Reamy BV (2009) Post-epidural headache: how late can it occur? J Am Board Fam Med 22(2):202–205

    Article  PubMed  Google Scholar 

  15. El Bashir H, Laundy M, Booy R (2003) Diagnosis and treatment of bacterial meningitis. Arch Dis Child 88(7):615–620

    Article  PubMed  CAS  Google Scholar 

  16. Straus SE, Thorpe KE, Holroyd-Leduc J (2006) How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis? JAMA 296(16):2012–2022

    Article  PubMed  CAS  Google Scholar 

  17. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijsdijk F, Tabrizi SJ, Banner S et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129(Pt 11):3042–3050

    Article  PubMed  CAS  Google Scholar 

  18. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood-brain barrier leakage in Alzheimer’s disease. Neurobiol Aging 28(7):977–986

    Article  PubMed  CAS  Google Scholar 

  19. Banks WA (2010) Immunotherapy and neuroimmunology in Alzheimer’s disease: a perspective from the blood-brain barrier. Immunotherapy 2(1):1–3

    Article  PubMed  Google Scholar 

  20. Kalaria RN (1997) Cerebrovascular degeneration is related to amyloid-beta protein deposition in Alzheimer’s disease. Ann N Y Acad Sci 826:263–271

    Article  PubMed  CAS  Google Scholar 

  21. Dickstein DL, Biron KE, Ujiie M, Pfeifer CG, Jeffries AR, Jefferies WA (2006) Abeta peptide immunization restores blood-brain barrier integrity in Alzheimer disease. FASEB J 20(3):426–433

    Article  PubMed  CAS  Google Scholar 

  22. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281

    Article  PubMed  CAS  Google Scholar 

  23. Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Dickson DW, Graff-Radford NR et al (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol 67(8):961–964

    Article  PubMed  Google Scholar 

  24. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099

    Article  PubMed  CAS  Google Scholar 

  25. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  PubMed  CAS  Google Scholar 

  26. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    Article  PubMed  CAS  Google Scholar 

  27. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435

    Article  PubMed  CAS  Google Scholar 

  28. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    Article  PubMed  CAS  Google Scholar 

  29. Morgan K (2011) The three new pathways leading to Alzheimer’s disease. Neuropathol Appl Neurobiol 37(4):353–357

    Article  PubMed  CAS  Google Scholar 

  30. Haass C (2004) Take five—BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23(3):483–488

    Article  PubMed  CAS  Google Scholar 

  31. Bai Y, Markham K, Chen F, Weerasekera R, Watts J, Horne P, Wakutani Y, Bagshaw R, Mathews PM, Fraser PE et al (2008) The in vivo brain interactome of the amyloid precursor protein. Mol Cell Proteomics 7(1):15–34

    PubMed  CAS  Google Scholar 

  32. Mohs RC, Rosen WG, Davis KL (1983) The Alzheimer’s disease assessment scale: an instrument for assessing treatment efficacy. Psychopharmacol Bull 19(3):448–450

    PubMed  CAS  Google Scholar 

  33. Tarawneh R, Holtzman DM (2010) Biomarkers in translational research of Alzheimer’s disease. Neuropharmacology 59(4–5):310–322

    Article  PubMed  CAS  Google Scholar 

  34. Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, Holtzman DM (2009) Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 65(2):176–183

    Article  PubMed  CAS  Google Scholar 

  35. Andreasen N, Blennow K (2005) CSF biomarkers for mild cognitive impairment and early Alzheimer’s disease. Clin Neurol Neurosurg 107(3):165–173

    Article  PubMed  Google Scholar 

  36. Thambisetty M, Simmons A, Hye A, Campbell J, Westman E, Zhang Y, Wahlund LO, Kinsey A, Causevic M, Killick R et al (2011) Plasma biomarkers of brain atrophy in Alzheimer’s disease. PLoS One 6(12):e28527

    Article  PubMed  CAS  Google Scholar 

  37. Bennett S, Grant M, Creese AJ, Mangialasche F, Cecchetti R, Cooper HJ, Mecocci P, Aldred S (2012) Plasma levels of complement 4a protein are increased in Alzheimer’s disease. Alzheimer Dis Assoc Disord 26(4):329–334

    Article  PubMed  CAS  Google Scholar 

  38. Ewers M, Mielke MM, Hampel H (2010) Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol 45(1):75–79

    Article  PubMed  CAS  Google Scholar 

  39. Correa JD, Starling D, Teixeira AL, Caramelli P, Silva TA (2011) Chemokines in CSF of Alzheimer’s disease patients. Arq Neuropsiquiatr 69(3):455–459

    Article  PubMed  Google Scholar 

  40. Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM et al (2011) Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One 6(4):e18850

    Article  PubMed  CAS  Google Scholar 

  41. Lee KS, Chung JH, Lee KH, Shin MJ, Oh BH, Hong CH (2008) Bioplex analysis of plasma cytokines in Alzheimer’s disease and mild cognitive impairment. Immunol Lett 121(2):105–109

    Article  PubMed  CAS  Google Scholar 

  42. Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67(7):739–748

    Article  PubMed  Google Scholar 

  43. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, Oulhaj A, Bradley KM, Jacoby R, Refsum H (2010) Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One 5(9):e12244

    Article  PubMed  Google Scholar 

  44. Richens JL, Urbanowicz RA, Lunt EA, Metcalf R, Corne J, Fairclough L, O’Shea P (2009) Systems biology coupled with label-free high-throughput detection as a novel approach for diagnosis of chronic obstructive pulmonary disease. Respir Res 10:29

    Article  PubMed  Google Scholar 

  45. Siemers E, DeMattos RB, May PC, Dean RA (2010) Role of biochemical Alzheimer’s disease biomarkers as end points in clinical trials. Biomark Med 4(1):81–89

    Article  PubMed  CAS  Google Scholar 

  46. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4):385–393

    Article  PubMed  CAS  Google Scholar 

  47. Khan TK, Alkon DL (2010) Early diagnostic accuracy and pathophysiologic relevance of an autopsy-confirmed Alzheimer’s disease peripheral biomarker. Neurobiol Aging 31(6):889–900

    Article  PubMed  CAS  Google Scholar 

  48. Wu CH, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu ZZ, Ledley RS, Lewis KC, Mewes HW, Orcutt BC (2002) The Protein Information Resource: an integrated public resource of functional annotation of proteins. Nucleic Acids Res 30(1):35–37

    Article  PubMed  CAS  Google Scholar 

  49. Smach MA, Charfeddine B, Ben Othman L, Lammouchi T, Dridi H, Nafati S, Ltaief A, Bennamou S, Limem K (2009) Evaluation of cerebrospinal fluid tau/beta-amyloid(42) ratio as diagnostic markers for Alzheimer disease. Eur Neurol 62(6):349–355

    Article  PubMed  CAS  Google Scholar 

  50. Mulder C, Verwey NA, van der Flier WM, Bouwman FH, Kok A, van Elk EJ, Scheltens P, Blankenstein MA (2010) Amyloid-beta(1-42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease. Clin Chem 56(2):248–253

    Article  PubMed  CAS  Google Scholar 

  51. Kasuga K, Tokutake T, Ishikawa A, Uchiyama T, Tokuda T, Onodera O, Nishizawa M, Ikeuchi T (2010) Differential levels of alpha-synuclein, beta-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 81(6):608–610

    Article  PubMed  Google Scholar 

  52. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11):1359–1362

    Article  PubMed  CAS  Google Scholar 

  53. Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Breteler M (2009) Identifying early markers of Alzheimer’s disease using quantitative multiplex proteomic immunoassay panels. Ann N Y Acad Sci 1180:56–67

    Article  PubMed  CAS  Google Scholar 

  54. Cristea IM, Gaskell SJ, Whetton AD (2004) Proteomics techniques and their application to hematology. Blood 103(10):3624–3634

    Article  PubMed  CAS  Google Scholar 

  55. Sihlbom C, Davidsson P, Emmett MR, Marshall AG, Nilsson CL (2004) Glycoprotemics of cerebrospinal fluid in neurodegenerative disease. Int J Mass Spectrom 234:145–152

    Article  CAS  Google Scholar 

  56. Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118(1–2):140–146

    Article  PubMed  CAS  Google Scholar 

  57. Hu Y, Hosseini A, Kauwe JS, Gross J, Cairns NJ, Goate AM, Fagan AM, Townsend RR, Holtzman DM (2007) Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clin Appl 1(11):1373–1384

    Article  PubMed  CAS  Google Scholar 

  58. Lopez MF, Mikulskis A, Kuzdzal S, Bennett DA, Kelly J, Golenko E, DiCesare J, Denoyer E, Patton WF, Ediger R et al (2005) High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin Chem 51(10):1946–1954

    Article  PubMed  CAS  Google Scholar 

  59. Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry—looking beyond classical histology. Nat Rev Cancer 10(9):639–646

    Article  PubMed  CAS  Google Scholar 

  60. Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, Hochstrasser DF, Sanchez JC (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3(8):1486–1494

    Article  PubMed  CAS  Google Scholar 

  61. Bradbury LE, LeBlanc JF, McCarthy DB (2004) ProteinChip array-based amyloid beta assays. Methods Mol Biol 264:245–257

    PubMed  CAS  Google Scholar 

  62. Lewczuk P, Esselmann H, Groemer TW, Bibl M, Maler JM, Steinacker P, Otto M, Kornhuber J, Wiltfang J (2004) Amyloid beta peptides in cerebrospinal fluid as profiled with surface enhanced laser desorption/ionization time-of-flight mass spectrometry: evidence of novel biomarkers in Alzheimer’s disease. Biol Psychiatry 55(5):524–530

    Article  PubMed  CAS  Google Scholar 

  63. Simonsen AH, McGuire J, Podust VN, Davies H, Minthon L, Skoog I, Andreasen N, Wallin A, Waldemar G, Blennow K (2008) Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging 29(7):961–968

    Article  PubMed  CAS  Google Scholar 

  64. Huang JT, McKenna T, Hughes C, Leweke FM, Schwarz E, Bahn S (2007) CSF biomarker discovery using label-free nano-LC-MS based proteomic profiling: technical aspects. J Sep Sci 30(2):214–225

    Article  PubMed  CAS  Google Scholar 

  65. Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, Nixon R, Nutt J, Chung K, Zabetian C et al (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9(3):293–348

    PubMed  CAS  Google Scholar 

  66. Li NJ, Liu WT, Li W, Li SQ, Chen XH, Bi KS, He P (2010) Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem 43(12):992–997

    Article  PubMed  CAS  Google Scholar 

  67. Makawita S, Diamandis EP (2010) The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification. Clin Chem 56(2):212–222

    Article  PubMed  CAS  Google Scholar 

  68. Van den Broek I, Sparidans RW, Schellens JH, Beijnen JH (2010) Quantitative assay for six potential breast cancer biomarker peptides in human serum by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878(5–6):590–602

    PubMed  Google Scholar 

  69. Ueda K, Saichi N, Takami S, Kang D, Toyama A, Daigo Y, Ishikawa N, Kohno N, Tamura K, Shuin T, Nakayama M, Sato TA, Nakamura Y, Nakagawa H (2011) A comprehensive peptidome profiling technology for the identification of early detection biomarkers for lung adenocarcinoma. PLoS One 6(4):e18567

    Article  PubMed  CAS  Google Scholar 

  70. Krutchinsky AN, Ayed A, Donald LJ, Ens W, Duckworth HW, Standing KG (2000) Studies of noncovalent complexes in an electrospray ionization/time-of-flight mass spectrometer. Methods Mol Biol 146:239–249

    PubMed  CAS  Google Scholar 

  71. Harrington PdB, Vieira NE, Espinoza J, Nien JK, Romero R, Yergey AL (2005) Analysis of variance-principal component analysis: a soft tool for proteomic discovery. Anal Chim Acta 544(1–2):118–127

    Article  CAS  Google Scholar 

  72. Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62(13):3609–3614

    PubMed  CAS  Google Scholar 

  73. Kaiser T, Kamal H, Rank A, Kolb HJ, Holler E, Ganser A, Hertenstein B, Mischak H, Weissinger EM (2004) Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood 104(2):340–349

    Article  PubMed  CAS  Google Scholar 

  74. Ball G, Mian S, Holding F, Allibone RO, Lowe J, Ali S, Li G, McCardle S, Ellis IO, Creaser C et al (2002) An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18(3):395–404

    Article  PubMed  CAS  Google Scholar 

  75. Feriotto G, Corradini R, Sforza S, Bianchi N, Mischiati C, Marchelli R, Gambari R (2001) Peptide nucleic acids and biosensor technology for real-time detection of the cystic fibrosis W1282X mutation by surface plasmon resonance. Lab Invest 81(10):1415–1427

    Article  PubMed  CAS  Google Scholar 

  76. Fang S, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046

    Article  PubMed  CAS  Google Scholar 

  77. Suda Y, Arano A, Fukui Y, Koshida S, Wakao M, Nishimura T, Kusumoto S, Sobel M (2006) Immobilization and clustering of structurally defined oligosaccharides for sugar chips: an improved method for surface plasmon resonance analysis of protein-carbohydrate interactions. Bioconjug Chem 17(5):1125–1135

    Article  PubMed  CAS  Google Scholar 

  78. Liu L, Xia N, Wang J (2012) Potential applications of SPR in early diagnosis and progression of Alzheimer’s disease. RSC Adv 2:2200–2204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna L. Richens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richens, J.L. et al. (2013). The Future Role of Biomarkers in Alzheimer’s Disease Diagnostics. In: Morgan, K., Carrasquillo, M. (eds) Genetic Variants in Alzheimer's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7309-1_13

Download citation

Publish with us

Policies and ethics