Skip to main content

Erythropoietin-Producing Human Hepatocellular Carcinoma (EphA1)

  • Chapter
  • First Online:
  • 1195 Accesses

Abstract

Eph-like receptors belong to the receptor tyrosine kinase family and are divided into two classes, A and B, based on their extracellular domains and the ephrin ligands that they bind. Eph signalling is complex as the two classes of receptors can interact to form functional “clusters” and the receptors themselves are capable of signalling. EphA1 is expressed in multiple tissues and is involved in cell adhesion and organisation of a range of developmental and physiological processes. In the CNS, EphA1 is involved in neural development, synapse plasticity and dendritic spine morphogenesis, suggesting that these receptors may be important as modifiers of neurodegenerative disease. A polymorphism (rs11767557) 3,154 bp upstream of EPHA1 has been significantly associated with Alzheimer’s disease in Caucasian cohorts; however, the functional variant remains unknown. Ephrin receptor signalling operates on known AD pathology pathways. Some ephrin receptors require processing by γ–secretase, which has previously been linked to AD. Furthermore, the role of ephrin receptors in neurodevelopment and spine morphology in AD areas of the brain suggests that differences in neural circuitry may be at fault.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F (1987) A novel putative tyrosine kinase receptor encoded by the eph gene. Science (New York, NY) 238:1717–1720

    Article  CAS  Google Scholar 

  2. Maru Y, Hirai H, Yoshida MC, Takaku F (1988) Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol Cell Biol 8:3770–3776

    PubMed  CAS  Google Scholar 

  3. Eph Nomenclature Committee (1997) Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90:403–404

    Article  Google Scholar 

  4. Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nature reviews. Neuroscience 2:155–164

    PubMed  CAS  Google Scholar 

  5. Coulthard MG et al (2001) Characterization of the Epha1 receptor tyrosine kinase: expression in epithelial tissues. Growth Factors (Chur, Switzerland) 18:303–317

    Article  CAS  Google Scholar 

  6. Hafner C et al (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50:490–499

    Article  PubMed  CAS  Google Scholar 

  7. Dong Y et al (2009) Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Mod Pathol 22:151–160

    Article  PubMed  CAS  Google Scholar 

  8. Triplett JW, Feldheim DA (2012) Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 23:7–15

    Article  PubMed  CAS  Google Scholar 

  9. Hruska M, Dalva MB (2012) Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci 50:35–44

    Article  PubMed  CAS  Google Scholar 

  10. Chen Y, Fu AKY, Ip NY (2012) Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24:606–611

    Article  PubMed  CAS  Google Scholar 

  11. Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nature reviews. Mol Cell Biol 3:475–486

    CAS  Google Scholar 

  12. Gale NW et al (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19

    Article  PubMed  CAS  Google Scholar 

  13. Brückner K, Pasquale EB, Klein R (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science (New York, NY) 275:1640–1643

    Article  Google Scholar 

  14. Janes PW et al (2011) Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. J Cell Biol 195:1033–1045

    Article  PubMed  CAS  Google Scholar 

  15. Holland SJ et al (1996) Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383:722–725

    Article  PubMed  CAS  Google Scholar 

  16. Davy A et al (1999) Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Gene Dev 13:3125–3135

    Article  PubMed  CAS  Google Scholar 

  17. San Miguel S et al (2011) Ephrin reverse signaling controls palate fusion via a PI3 kinase-­dependent mechanism. Dev Dyn 240:357–364

    Article  PubMed  Google Scholar 

  18. Miao H, Wang B (2012) EphA receptor signaling-complexity and emerging themes. Semin Cell Dev Biol 23:16–25

    Article  PubMed  CAS  Google Scholar 

  19. Yamazaki T et al (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255

    Article  PubMed  CAS  Google Scholar 

  20. Miao H, Burnett E, Kinch M, Simon E, Wang B (2000) Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2:62–69

    Article  PubMed  CAS  Google Scholar 

  21. Deroanne C, Vouret-Craviari V, Wang B, Pouysségur J (2003) EphrinA1 inactivates integrin-­mediated vascular smooth muscle cell spreading via the Rac/PAK pathway. J Cell Sci 116:1367–1376

    Article  PubMed  CAS  Google Scholar 

  22. Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178:1295–1307

    Article  PubMed  CAS  Google Scholar 

  23. Huai J, Drescher U (2001) An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J Biol Chem 276:6689–6694

    Article  PubMed  CAS  Google Scholar 

  24. Lai K-O, Ip NY (2009) Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol 19:275–283

    Article  PubMed  CAS  Google Scholar 

  25. Nie D et al (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13:163–172

    Article  PubMed  CAS  Google Scholar 

  26. Cheng HJ, Nakamoto M, Bergemann AD, Flanagan JG (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381

    Article  PubMed  CAS  Google Scholar 

  27. Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12:15–20

    Article  PubMed  CAS  Google Scholar 

  28. Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326

    Article  PubMed  CAS  Google Scholar 

  29. Kayser MS, Nolt MJ, Dalva MB (2008) EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59:56–69

    Article  PubMed  CAS  Google Scholar 

  30. Moeller ML, Shi Y, Reichardt LF, Ethell IM (2006) EphB receptors regulate dendritic spine morphogenesis through the recruitment/phosphorylation of focal adhesion kinase and RhoA activation. J Biol Chem 281:1587–1598

    Article  PubMed  CAS  Google Scholar 

  31. McClelland AC, Hruska M, Coenen AJ, Henkemeyer M, Dalva MB (2010) Trans-synaptic EphB2-ephrin-B3 interaction regulates excitatory synapse density by inhibition of postsynaptic MAPK signaling. Proc Natl Acad Sci U S A 107:8830–8835

    Article  PubMed  CAS  Google Scholar 

  32. Torres R et al (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21:1453–1463

    Article  PubMed  CAS  Google Scholar 

  33. Armstrong JN et al (2006) B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J Neurosci 26:3474–3481

    Article  PubMed  CAS  Google Scholar 

  34. Essmann CL et al (2008) Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat Neurosci 11:1035–1043

    Article  PubMed  CAS  Google Scholar 

  35. Xu N-J, Sun S, Gibson JR, Henkemeyer M (2011) A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat Neurosci 14:1421–1429

    Article  PubMed  CAS  Google Scholar 

  36. Segura I, Essmann CL, Weinges S, Acker-Palmer A (2007) Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat Neurosci 10:301–310

    Article  PubMed  CAS  Google Scholar 

  37. Antion MD, Christie LA, Bond AM, Dalva MB, Contractor A (2010) Ephrin-B3 regulates glutamate receptor signaling at hippocampal synapses. Mol Cell Neurosci 45:378–388

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura-Hirota T, Kadoyama K, Takano M, Otani M, Matsuyama S (2012) The expression changes of EphA3 receptor during synaptic plasticity in mouse hippocampus through activation of nicotinic acetylcholine receptor. Neuroreport 23:746–751

    Article  PubMed  CAS  Google Scholar 

  39. Filosa A et al (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12:1285–1292

    Article  PubMed  CAS  Google Scholar 

  40. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160

    Article  PubMed  CAS  Google Scholar 

  41. Fu W-Y et al (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67–76

    Article  PubMed  CAS  Google Scholar 

  42. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci U S A 106:12524–12529

    Article  PubMed  CAS  Google Scholar 

  43. Khodosevich K, Watanabe Y, Monyer H (2011) EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci 124:1268–1279

    Article  PubMed  CAS  Google Scholar 

  44. Owshalimpur D, Kelley MJ (1999) Genomic structure of the EPHA1 receptor tyrosine kinase gene. Mol Cell Probes 13:169–173

    Article  PubMed  CAS  Google Scholar 

  45. Hollingworth P et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  PubMed  CAS  Google Scholar 

  46. Naj AC et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  PubMed  CAS  Google Scholar 

  47. Carrasquillo MM et al (2011) Replication of EPHA1 and CD33 associations with late-onset Alzheimer’s disease: a multi-centre case-control study. Mol Neurodegeneration 6:54

    Article  CAS  Google Scholar 

  48. 1000 Genomes Project Consortium (2010) A map of human genome variation from population-­scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

  49. Johnson AD et al (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics (Oxford, England) 24:2938–2939

    Article  CAS  Google Scholar 

  50. Cissé M et al (2011) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469:47–52

    Article  PubMed  Google Scholar 

  51. Moreno-Flores MT, Martín-Aparicio E, Avila J, Díaz-Nido J, Wandosell F (2002) Ephrin-B1 promotes dendrite outgrowth on cerebellar granule neurons. Mol Cell Neurosci 20:429–446

    Article  PubMed  CAS  Google Scholar 

  52. Tomita T, Tanaka S, Morohashi Y, Iwatsubo T (2006) Presenilin-dependent intramembrane cleavage of ephrin-B1. Mol Neurodegeneration 1:2

    Article  Google Scholar 

  53. Inoue E et al (2009) Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 185:551–564

    Article  PubMed  CAS  Google Scholar 

  54. Xu J, Litterst C, Georgakopoulos A, Zaganas I, Robakis NK (2009) Peptide EphB2/CTF2 generated by the gamma-secretase processing of EphB2 receptor promotes tyrosine phosphorylation and cell surface localization of N-methyl-d-aspartate receptors. J Biol Chem 284:27220–27228

    Article  PubMed  CAS  Google Scholar 

  55. Yoo S, Shin J, Park S (2010) EphA8-ephrinA5 signaling and clathrin-mediated endocytosis is regulated by Tiam-1, a Rac-specific guanine nucleotide exchange factor. Mol Cell 29:603–609

    Article  CAS  Google Scholar 

  56. Irie F, Okuno M, Pasquale EB, Yamaguchi Y (2005) EphrinB-EphB signalling regulates clathrin-­mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol 7:501–509

    Article  PubMed  CAS  Google Scholar 

  57. Morgan K (2011) The three new pathways leading to Alzheimer’s disease. Neuropathol Appl Neurobiol 37:353–357

    Article  PubMed  CAS  Google Scholar 

  58. Simón AM et al (2009) Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease. J Alzheim Dis 17:773–786

    Google Scholar 

  59. Litterst C et al (2007) Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-­processing pathways of EphB2 receptor. J Biol Chem 282:16155–16163

    Article  PubMed  CAS  Google Scholar 

  60. Barthet G et al (2012) Presenilin mediates neuroprotective functions of ephrinB and brain-­derived neurotrophic factor and regulates ligand-induced internalization and metabolism of EphB2 and TrkB receptors. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2012.02.024

    PubMed  Google Scholar 

  61. Van Hoecke A et al (2012) EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med. doi:10.1038/nm.2901

    PubMed  Google Scholar 

  62. Consortium TU (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Medway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medway, C., Braae, A., Morgan, K. (2013). Erythropoietin-Producing Human Hepatocellular Carcinoma (EphA1). In: Morgan, K., Carrasquillo, M. (eds) Genetic Variants in Alzheimer's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7309-1_10

Download citation

Publish with us

Policies and ethics