Skip to main content

Retroviral Sex and Escape

  • Chapter
  • First Online:
  • 775 Accesses

Abstract

In the late 1960s, virologists made the surprising discovery that retroviruses exhibit a form of sexual reproduction. Humans are genetically “diploid”, which means that, except in germline cells, they maintain two sets of genetic information (in DNA, on paired chromosomes), and of course they reproduce sexually.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Artensein AW, VanCott TC, Mascola JR et al (1995) Dual infection with human immunodeficiency virus type 1 of distinct envelope subtypes in humans. J Infect Dis 171:805–810

    Article  Google Scholar 

  2. Biebricher CK, Eigen M (2005) The error threshold. Virus Res 107:117–127

    Article  PubMed  CAS  Google Scholar 

  3. Bocharov G, Ford NJ, Edwards J, Breinig T, Wain-Hobson S, Meyerhans A (2005) A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J Gen Virol 86:3109–3118

    Article  PubMed  CAS  Google Scholar 

  4. Boerlijst MC, Bonhoeffer S, Nowak MA (1996) Proc R Soc Lond B 263:1577–1584

    Article  Google Scholar 

  5. Bonhoeffer S, May RM, Shaw GM, Nowak MA (1997) Virus dynamics and drug therapy. Proc. Nat. Acad. Science USA 94:6971–6976

    Article  CAS  Google Scholar 

  6. Bretscher MT et al (2004) Recombination in HIV and the evolution of drug resistance: for better or for worse? BioEssays 26:180–188

    Article  PubMed  CAS  Google Scholar 

  7. Burke DS (1997) Recombination in HIV: an important evolutionary strategy. Emerg Infect Dis 3:253–259

    Article  PubMed  CAS  Google Scholar 

  8. Butto S, Argentini AM, Mazzella MP et al (1997) Dual infection with different strains of the same HIV-1 subtype. AIDS 11:694–696

    PubMed  CAS  Google Scholar 

  9. Chohan B, Lavreys L, Rainwater SM, Overbaugh J (2005) Evidence for frequent reinfection with human immunodeficiency virus type 1 of a different subtype. J Virol 79(16):10701–10708

    Article  PubMed  CAS  Google Scholar 

  10. Coffin JM (1979) Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42:1–26

    Article  PubMed  CAS  Google Scholar 

  11. Coffin JM (1995) HIV dynamics in vivo:implications for genetic variation, pathogenesis, and therapy. Science 267:483–489

    Google Scholar 

  12. Devereux HL, Emery VC, Johnson MA, Loveday C (2001) Replicative fitness in vivo of HIV-1 variants with multiple drug-resistance-associated mutations. J Med Virol 65:218–224

    Article  PubMed  CAS  Google Scholar 

  13. Diaz RA, Sabino EC, Mayer A et al (1995) Dual human immunodeficiency virus type 1 infection and recombination in a dually exposed transfusion recipient. J Virol 69:3273–3281

    PubMed  CAS  Google Scholar 

  14. Dixit NM, Perelson AS (2004) Multiplicity of human immunodeficiency virus infections in lymphoid tissue. J Virol 78:8942–8945

    Article  PubMed  CAS  Google Scholar 

  15. Duesberg PH (1968) Physical properties of Rous Sarcoma virus RNA. Proc Natl Acad Sci USA 60(4):1511–1518

    Article  PubMed  CAS  Google Scholar 

  16. Eigen M (1993) Viral quasispecies. Sci Am 269:42–49

    Article  PubMed  CAS  Google Scholar 

  17. Fang G, Weiser B, Kuiken C, Philpott SM, Rowland-Jones S, Plummer F, Kimani J, Shi B, Kaul R, Bwayo J, Anzala O, Burger H (2004) Recombination following superinfection by HIV-1. AIDS 18(2):153–159

    Article  PubMed  CAS  Google Scholar 

  18. Fraser C, Ferguson NM, Anderson RM (2001) Quantification of intrinsic residual viral replication in treated HIV-infected patients. Proc Natl Acad Sci USA 98(26):15167–15172

    Article  PubMed  CAS  Google Scholar 

  19. Gu ZX, Gao EA, Faust EA, Wainberg MA (1995) Possible involvement of cell fusion and recombination in generation of human immunodeficiency virus variants that display resistance to AZT and 3TC. J Gen Virol 76:2601–2605

    Article  PubMed  CAS  Google Scholar 

  20. Holland JJ, De La Torre JC, Steinhauser DA (1992) RNA virus populations as quasispecies. Curr Top Microbiol Immunol 176:1–20

    Article  PubMed  CAS  Google Scholar 

  21. Hu DJ, Subbarao S, Vanichseni S, Mock PA, Ramos A, Nguyen L, Chaowanachan T, Griensven F, Choopanya K, Mastro TD, Tappero JW (2005) Frequency of HIV-1 dual subtype infections, including intersubtype superinfections, among injection drug users in Bangkok, Thailand. AIDS 19(3):303–308

    PubMed  Google Scholar 

  22. Hu WS, Temin HM (1989) Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Nat. Acad. Science USA 87:1556–1560

    Article  Google Scholar 

  23. Jetzt A et al (2000) High rate of recombination throughout the human immunodeficiency virus genome. J Virol 74:1234–1240

    Article  PubMed  CAS  Google Scholar 

  24. Jung A, Maier R, Vartanian J-P et al (2002) Multiply infected spleen cells in HIV patients. Science 418:144

    CAS  Google Scholar 

  25. Kellam P, Larder BA (1995) Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J Virol 69:669–674

    PubMed  CAS  Google Scholar 

  26. Kikolenko GN, Svarovskaia ES, Delviks KA, Pathak VN (2004) Antiretroviral drug resistance mutations in human immunodeficiency virus1 reverse transcriptase increase template-switching frequency. J Virol 78:8761–8770

    Article  Google Scholar 

  27. Kramer B, Pelchen-Matthews A, Deneka M et al (2005) HIV interaction with endsomes in macrophages and dendritic cells. Blood Cell Mol Dis 35:136–142

    Article  CAS  Google Scholar 

  28. Larder BA, Kellam P, Kemp SD (1991) Zidovudine resistance predicted by direct detection of mutations in DNA from HIV-infected lymphocytes. AIDS 5:137–144

    Article  PubMed  CAS  Google Scholar 

  29. Larder BA, Kellam P, Kemp SD (1993) Convergent combination therapy can select viable multi-drug resistant HIV-1 in vitro. Nature 365:451–453

    Article  PubMed  CAS  Google Scholar 

  30. Levy DN, Aldrovandi GM, Kutsch O, Shaw GN (2004) Dynamics of HIV-1 recombination in its natural target cells. Proc. Nat. Acad. Science USA 101:4204–4209

    Article  CAS  Google Scholar 

  31. Liu S-L, Mittler JE, Nickle DC et al (2002) Selection for human immunodeficiency virus1 recombinants in a patient with rapid progression to AIDS. J Virol 76:10674–10684

    Article  PubMed  CAS  Google Scholar 

  32. Marsh M (2005) Report delivered at a seminar at the Fred Hutchinson Cancer Research Center, 8 December 2005

    Google Scholar 

  33. Menéndez-Arias L, Martínez MA, Quiñones-Mateu ME, Martinez-Picado J (2003) Curr Drug Targets-Inf Disord 3:355–371

    Article  Google Scholar 

  34. Meyerhans A et al (2003) The non-clonal and transitory nature of HIV in vivo. Swiss Med Wkly 133:451–454

    PubMed  CAS  Google Scholar 

  35. Moutouh L, Corbeil J, Richman DD (1996) Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc. Nat. Acad. Science USA 93:6106–6111

    Article  CAS  Google Scholar 

  36. Negroni M, Buc H (2001) Mechanisms of retroviral recombination. Annu Rev Genet 35:275–302

    Article  PubMed  CAS  Google Scholar 

  37. Novick A, Szilard L (1951) Virus strains of identical phenotype but different phenotype. Science 113:34–35

    Article  PubMed  CAS  Google Scholar 

  38. Piantadosi A, Chohan B, Chohan V, McClelland RS, Overbaugh J (2007) Chronic HIV-1 infection frequently fails to protect against superinfection. PLoS Pathog 3(11):e177

    Article  PubMed  Google Scholar 

  39. Ramos A, Hu DJ, Nguyen L, Phan KO, Vanichseni S, Promadej N, Choopanya K, Callahan M, Young NL, McNicholl J, Mastro TD, Folks TM, Subbarao S (2002) Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users. J Virol 76(15):7444–7452

    Article  PubMed  CAS  Google Scholar 

  40. Rhodes T (2003) High rates of human immunodeficiency virus type 1 recombination: near-random segregation of markers one kilobase apart in one round of replication. J Virol 77:11193–11200

    Article  PubMed  CAS  Google Scholar 

  41. Rhodes TD, Nikolaitchik Ol, Chen J et al (2005) Genetic recombination of human immunodeficiency virus1 in one round of viral replication: effects of distance, target cells, accessory genes and lack of high negative interference in crossover events. J Virol 79:1666–1667

    Article  PubMed  CAS  Google Scholar 

  42. Shriner D et al (2004) Pervasive genomic recombination of HIV-1 in vivo. Genetics 167:1573–1583

    Article  PubMed  CAS  Google Scholar 

  43. Stilianakis NI, Boucher CAB, De Jong MD et al (1997) Clinical data sets of human immunodeficiency virus1 reverse transcriptase-resistant mutants explained by a mathematical model. J Virol 71:161–168

    PubMed  CAS  Google Scholar 

  44. Temin HM (1991) Sex and recombination in retroviruses. Trends Genet 7:71–74

    PubMed  CAS  Google Scholar 

  45. Wick D, Self SG (2005) How fast can HIV escape from immune control? In: Tan W-Y, Wu H (eds) Deterministic and stochastic models of AIDS epidemics and HIV infections with intervention. World Scientific, Singapore

    Google Scholar 

  46. Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Nat. Acad. Science USA 103:738–743

    Article  CAS  Google Scholar 

  47. Xin KQ, Ma XH, Crandall KA et al (1995) 346:1372–1373

    Google Scholar 

  48. Yang OO, Daar ES, Jamieson BD, Balamurugan A et al (2005) human immunodeficiency virusclade B superinfection: evidence for differential containment of distinct clade B strains. J Virol 79:860–868

    Article  PubMed  CAS  Google Scholar 

  49. Yusa K, Kavlick MF, Kosalaraksa P, Mitsuya H (1997) HIV-1 acquires resistance to two classes of antiviral drugs through homologous recombination. Antirviral Res 36:189–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wick, W.D., Yang, O.O. (2013). Retroviral Sex and Escape. In: War in the Body. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7294-0_10

Download citation

Publish with us

Policies and ethics