Arithmetical Properties of Polynomials

Chapter

Abstract

The present article describes Erdős’s work contained in the following papers.
  1. [E1]

    On the coefficients of the cyclotomic polynomials, Bull. Amer. Math. Soc. 52 (1946), 179–183.

     
  2. [E2]

    On the coefficients of the cyclotomic polynomial, Portug. Math. 8 (1949), 63–71.

     
  3. [E3]

    On the number of terms of the square of a polynomial, Nieuw Archief voor Wiskunde (1949), 63–65.

     
  4. [E4]

    On the greatest prime factor of \(\mathop{\prod }\limits _{k=1}^{x}f(k)\), J. London Math. Soc. 27 (1952), 379–384.

     
  5. [E5]

    On the sum \(\sum \limits _{k=1}^{x}d(f(k))\), ibid. 7–15.

     
  6. [E6]

    Arithmetical properties of polynomials, ibid. 28 (1953), 436–425.

     
  7. [E7]

    Über arithmetische Eigenschaften der Substitutionswerte eines Polynoms für ganzzahlige Werte des Arguments, Revue Math. Pures et Appl. 1 (1956) No. 3, 189–194.

     
  8. [E8]

    On the growth of the cyclotomic polynomial in the interval (0,1), Proc. Glasgow Math. Assoc. 3 (1957), 102–104.

     
  9. [E9]

    On the product \(\mathop{\prod }\limits _{k=1}^{n}(1 {-\zeta }^{a_{i}})\), Publ. Inst. Math. Beograd 13 (1959), 29–34 (with G. Szekeres).

     
  10. [E10]

    Bounds for the r-th coefficients of cyclotomic polynomials, J. London Math. Soc. (2) 8 (1974), 393–400 (with R. C. Vaughan).

     
  11. [E11]

    Prime polynomial sequences, ibid. (2) 14 (1976), 559–562 (with S. D. Cohen, M. B. Nathanson).

     
  12. [E12]

    On the greatest prime factor of \(\mathop{\prod }\limits _{k=1}^{x}f(k)\), Acta Arith. 55 (1990), 191–200 (with A. Schinzel).

     

Keywords

Manifold 

Bibliography

  1. 1.
    F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 4 (1961), 7–12.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D. Coppersmith and J. Davenport, Polynomials whose powers are sparse, Acta Arith. 58 (1991), 79–87.MathSciNetMATHGoogle Scholar
  3. 3.
    C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge University Press 1976.Google Scholar
  4. 4.
    H. Maier, Cyclotomic polynomials with large coefficients, Acta Arith. 65 (1993), 227–235.MathSciNetGoogle Scholar
  5. 5.
    M. Nair, Power free values of polynomials, Mathematika 26 (1976), 159–183.CrossRefGoogle Scholar
  6. 6.
    M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62 (1992), 257–269.MathSciNetMATHGoogle Scholar
  7. 7.
    A. Schinzel, On the number of terms of a power of polynomial, ibid, 49 (1987), 55–70.Google Scholar
  8. 8.
    A. Schinzel and U. Zannier, Distribution of solutions of diophantine equations \(f_{1}(x_{1})f_{2}(x_{2}) = f_{3}(x_{3})\), where f i are polynomials, Rend. Sem. Mat. Univ. Padova 87 (1992), 39–68.MathSciNetMATHGoogle Scholar
  9. 9.
    A. Schinzel and U. Zannier, On the number of non-zero coefficients of a power of a polynomial, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 20 (2009), 95–98.Google Scholar
  10. 10.
    G. Tenenbaum, Sur une question d’Erdős et Schinzel II, Inv. Math. 99 (1990), 215–224.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289–295.MathSciNetGoogle Scholar
  12. 12.
    W. Verdenius, On the number of terms of the square and the cube of polynomials, Indag. Math. 11 (1949), 596–565.Google Scholar
  13. 13.
    D. Wolke, Multiplikative Funktionen auf schnell wachsenden Folgen, J. Reine Angew. Math. 251 (1971), 54–67.MathSciNetMATHGoogle Scholar
  14. 14.
    U. Zannier, On composite lacunary polynomials and the proof of a conjecture of Schinzel, Invent. Math. 174 (2008), 127–138.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations