Skip to main content

On Primes Recognizable in Deterministic Polynomial Time

  • Chapter
  • First Online:

Summary

We discuss some simple deterministic algorithms that establish primality for a robust set of primes in polynomial time. The first 6 sections comprise the intact original article published in the first edition of this volume in 1997. The last 2 sections discuss developments in this fast-moving field to early 2013, and refer to the prior sections in the past tense. The bibliography for the original article and the new update have been combined.

For Paul Erdős on his eightieth birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Supported in part by the Cultural Initiative Fund and the Russian Academy of Natural Sciences

  2. 2.

    Supported in part by an NSF grant

References

  1. L. M. Adleman and M.-D. A. Huang, Primality testing and two-dimensional abelian varieties over finite fields, Lecture Notes in Math. 1512, Springer-Verlag, Berlin, 1992, 142 pp.

    Google Scholar 

  2. L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1983), 173–206.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. 160 (2004), 781–793.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 140 (1994), 703–722.

    Article  MathSciNet  Google Scholar 

  5. D. Bernstein, Proving primality in essentially quartic random time, Math. Comp. 76 (2007), 389–403.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bosma and M.-P. van der Hulst, Primality proving with cyclotomy, Ph.D. thesis, Amsterdam (1990).

    Google Scholar 

  7. J. Brillhart, M. Filaseta, and A. Odlyzko, On an irreducibility theorem of A. Cohn, Can. J. Math. 33 (1981), 1055–1099.

    Google Scholar 

  8. J. Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factorizations of 2m ± 1, Math. Comp. 29 (1975), 620–647.

    MathSciNet  MATH  Google Scholar 

  9. J. P. Buhler, R. E. Crandall and M. A. Penk, Primes of the form n!  ± 1 and 2 ⋅3 ⋅5…p ± 1, Math. Comp. 38 (1982), 639–643.

    MathSciNet  MATH  Google Scholar 

  10. E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning “factorisatio numerorum”, J. Number Theory 17 (1983), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Crandall and C. Pomerance, Prime numbers: a computational perspective, 2nd ed., Springer, New York, 2005.

    Google Scholar 

  12. H. Davenport, Multiplicative number theory, 2nd ed., Springer-Verlag, New York, 1980.

    Book  MATH  Google Scholar 

  13. P. Erdős, On almost primes, Amer. Math. Monthly 57 (1950), 404–407.

    Article  MathSciNet  Google Scholar 

  14. P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206.

    MathSciNet  Google Scholar 

  15. P. Erdős and J. H. van Lint, On the number of positive integers ≤ x and free of prime factors > y, Simon Stevin 40 (1966/67), 73–76.

    Google Scholar 

  16. M. R. Fellows and N. Koblitz, Self-witnessing polynomial-time complexity and prime factorization, Designs, Codes and Cryptography 2 (1992), 231–235.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Fürer, Deterministic and Las Vegas primality testing algorithms, in Proceedings of ICALP 85 (July 1985). Nafplion, Greece. W. Brauer, ed., Lecture Notes in Computer Science 194, Springer-Verlag, Berlin, 1985, pp. 199–209.

    Google Scholar 

  18. A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. W. Lenstra, Jr., Miller’s primality test, Information Processing Letters 8 (1979), 86–88.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. W. Lenstra, jr and Carl Pomerance, Primality testing with Gaussian periods, www.math.dartmouth.edu/~carlp/aks041411.pdf

  21. F. Pappalardi, On Artin’s conjecture for primitive roots, Ph.D. thesis, McGill University (1993).

    Google Scholar 

  22. J. Pintz, W. L. Steiger and E. Szemerédi, Infinite sets of primes with fast primality tests and quick generation of large primes, Math. Comp. 53 (1989), 399–406.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Pomerance, Very short primality proofs, Math. Comp. 48 (1987), 315–322.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Pomerance, Primality testing: variations on a theme of Lucas, Congressus Numerantium 201 (2010), 301–312.

    MathSciNet  MATH  Google Scholar 

  25. V. R. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4 (1975), 214–220.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.

    MathSciNet  MATH  Google Scholar 

  27. R. Solovay and V. Strassen, A fast Monte Carlo test for primality, SIAM J. Comput. 6 (1977) 84–85; erratum 7 (1978), 118.

    Google Scholar 

  28. I. M. Vinogradov, On the bound of the least non-residue of nth powers, Bull. Acad. Sci. USSR 20 (1926), 47–58 (= Trans. Amer. Math. Soc. 29 (1927), 218–226).

    Google Scholar 

  29. B. Źrałek, A deterministic version of Pollard’s p − 1 algorithm, Math. Comp. 79 (2010), 513–533.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Pomerance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Konyagin, S., Pomerance, C. (2013). On Primes Recognizable in Deterministic Polynomial Time. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_12

Download citation

Publish with us

Policies and ethics