Skip to main content

The PCF Theorem Revisited

  • Chapter
  • First Online:
The Mathematics of Paul Erdős II

Summary

The pcf theorem (of the possible cofinability theory) was proved for reduced products \(\prod _{i <\kappa }\lambda _{i}/I\), where \(\kappa <\min _{i<\kappa }\lambda _{i}\). Here we prove this theorem under weaker assumptions such as \(\mathrm{wsat}\,(I) <\min _{i<\kappa }\lambda _{i}\), where wsat(I) is the minimalθsuch thatκcannot be divided toθsetsI(or even slightly weaker condition). We also look at the existence of exact upper bounds relative to < I ( < I -eub) as well as cardinalities of reduced products and the cardinalsT D (λ).Finally we apply this to the problem of the depth of ultraproducts (and reduced products) of Boolean algebras.

Partially supported by the Deutsche Forschungsgemeinschaft, grant Ko 490/7-1. Publication no. 506.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    actually we do not require p ≤ q ≤ p ⇒ p = q so we should say quasi partial order

  2. 2.

    note if cf (θ) < θ then “θ + -directed” follows from “θ-directed” which follows from “ \(\lim \inf _{{I}^{{\ast}}}(\bar{\lambda }) \geq \theta\) , i.e. first part of clause (β) implies clause (β). Note also that if clause (α) holds then \(\prod \bar{\lambda }/{I}^{{\ast}}\) is θ + -directed (even \((\prod \bar{\lambda },<)\) is θ + -directed), so clause (α) implies clause (β).

  3. 3.

    in fact note that for no \(B_{\varepsilon } \subseteq \kappa (\varepsilon <\theta )\) do we have: \(B_{\varepsilon }\neq B_{\varepsilon +1}\,\mathrm{mod\,}{I}^{{\ast}}\) and \(\varepsilon <\zeta <\theta \Rightarrow B_{\varepsilon } \cap A_{\zeta } \subseteq B_{\zeta }\) where \(A_{\zeta } =\kappa \,\mathrm{mod\,}{I}^{{\ast}}\) (e.g. \(A_{\zeta } = A_{\zeta }^{{\ast}}\))

  4. 4.

    Of course, \(B_{\alpha } =\kappa \,\mathrm{mod\,}J_{<\lambda }(\bar{\lambda })\) , this becomes trivial.

  5. 5.

    Note: if \(\mathrm{otp}(a_{\delta }) =\theta\) and \(\delta =\sup (a_{\delta })\) (holds if δ ∈ S, \(\mu =\theta +1\) and \(\bar{a}\) continuous in S (see below)) and δ ∈ acc(E) then δ is as required.

  6. 6.

    sthe definition of \(B_{i}^{\alpha }\) in the proof of [8, III 2.14(2)] should be changed as in [Sh351, 4.4(2)]

  7. 7.

     ≤  s +  means here that the right side is a supremum, right bigger than the left or equal but the supremum is obtained

Bibliography

  1. C. C. Chang and H. J. Keisler, Model Theory, North Holland Publishing Company (1973).

    Google Scholar 

  2. F. Galvin and A. Hajnal, Inequalities for cardinal power, Annals of Math., 10 (1975) 491–498.

    Article  MathSciNet  Google Scholar 

  3. A. Kanamori, Weakly normal filters and irregular ultra-filter, Trans of A.M.S., 220 (1976) 393–396.

    Google Scholar 

  4. S. Koppelberg, Cardinalities of ultraproducts of finite sets, The Journal of Symbolic Logic, 45 (1980) 574–584.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Ketonen, Some combinatorial properties of ultra-filters, Fund Math. VII (1980) 225–235.

    Google Scholar 

  6. J. D. Monk, Cardinal Function on Boolean Algebras, Lectures in Mathematics, ETH Zürich, Bikhäuser, Verlag, Baser, Boston, Berlin, 1990.

    Google Scholar 

  7. S. Shelah, Proper forcing Springer Lecture Notes, 940 (1982) 496+xxix.

    Google Scholar 

  8. S. Shelah, Cardinal Arithmetic, volume 29 of Oxford Logic Guides, General Editors: Dov M. Gabbai, Angus Macintyre and Dana Scott, Oxford University Press, 1994.

    Google Scholar 

  9. S. Shelah, On the cardinality of ultraproduct of finite sets, Journal of Symbolic Logic, 35 (1970) 83–84.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Shelah, Products of regular cardinals and cardinal invariants of Boolean Algebra, Israel Journal of Mathematics, 70 (1990) 129–187.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Shelah, Cardinal arithmetic for skeptics, American Mathematical Society. Bulletin. New Series, 26 (1992) 197–210.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Shelah, More on cardinal arithmetic, Archive of Math Logic, 32 (1993) 399–428.

    Article  MATH  Google Scholar 

  13. S. Shelah, Advances in Cardinal Arithmetic, Proceedings of the Conference in Banff, Alberta, April 1991, ed. N. W. Sauer et al., Finite and Infinite Combinatorics, Kluwer Academic Publ., (1993) 355–383.

    Google Scholar 

  14. S. Shelah, Further cardinal arithmetic, Israel Journal of Mathematics, Israel Journal of Mathematics, 95 (1996) 61–114.

    Article  MATH  Google Scholar 

  15. M. Magidor and S. Shelah, λ i inaccessible \(>\kappa \prod _{i<\kappa }\lambda _{i}/D\) of order typeμ  + , preprint.

    Google Scholar 

  16. S. Shelah, PCF theory: Application, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saharan Shelah .

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul Erdős

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shelah, S. (2013). The PCF Theorem Revisited. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős II. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7254-4_26

Download citation

Publish with us

Policies and ethics