Skip to main content

Subtraction Techniques for CT and DSA and Automated Detection of Lung Nodules in 3D CT

  • Chapter
  • First Online:
  • 1344 Accesses

Abstract

The interpretation of a large number of CT images is time consuming and hard work for radiologists. Therefore, we have developed two subtraction techniques based on a 3D morphological filtering technique and a temporal subtraction technique to remove normal structures such as pulmonary vessels and bones.

Digital subtraction angiography (DSA) is inadequate for coronary artery due to the existence of severe motion artifacts. In view of this, we have developed a new DSA technique with an artifact reduction technique based on the time-series image processing. The results indicated a considerable improvement in DSA quality; thus, the coronary arteries, carotid artery, and vein were clearly enhanced.

We have also developed an automated computerized method for the detection of lung nodules in 3D computed tomography (CT) images obtained by helical CT. To enhance lung nodules, we employed 3D cross-correlation method by use of a 3D Gaussian template with zero-surrounding as a template. The average number of false positives was 5.2 per case at the sensitivity of 95.8 %.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sone S, Li F, Yang Z-G et al (2001) Results of three-year mass screening program for lung cancer using mobile low-dose spiral computed tomography scanner. Br J Cancer 84:25–32

    Article  Google Scholar 

  2. Sone S, Takashima S, Li F et al (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351:1242–1245

    Article  Google Scholar 

  3. Difazio MC, MacMahon H, Xu XW, Tsai P, Shiraishi J, Armato SG III, Doi K (1997) Digital chest radiography: effect of temporal subtraction images on detection accuracy. Radiology 202:447–452

    Google Scholar 

  4. Ishida T, Katsuragawa S, Nakamura K, MacMahon H, Doi K (1999) Iterative image-warping technique for temporal subtraction of sequential chest radiographs to detect interval change. Med Phys 26:1320–1329

    Article  Google Scholar 

  5. Ishida T, Ashizawa K, Engelmann R, Katsuragawa S, MacMahon H, Doi K (1999) Application of temporal subtraction for detection of interval changes in chest radiographs: improvement of subtraction image using automated initial image matching. J Digit Imaging 12:77–86

    Article  Google Scholar 

  6. Takahashi M, Shinozato J, Korogi Y (1986) Automatic registration for correction of localized misregistration artifacts in digital subtraction angiography of the head and neck. Acta Radiol Suppl Stock 369:281–284

    Google Scholar 

  7. Hiroshima K, Nishino J, Odaka T, Ogura H, Fukushima T, Nishimoto Y, Tanaka M, Hayashi N, Komuro H, Ishii Y (1999) New registration method using the local adjustment of ROIs in DSA image of the head and neck. IEICE Trans Inf Syst J82-D-2(3):566–570

    Google Scholar 

  8. De Castoro E, Morandi C (1987) Registration of translated and rotated images using finite Fourier transforms. IEEE Trans Pattern Anal Mach Intell 9(5):700–703

    Article  Google Scholar 

  9. Lee DJ, Krile TF, Mitra S (1987) Digital Registration Techniques for Sequential Fundus Images, SPIE in Applied Digital Image Processing, vol 829, San Diego, pp 293–300

    Google Scholar 

  10. Hiroshima K, Nishino J, Odaka T (2000) Improved registration method for correcting local shifting on DSA images. Jpn Soc Med Imaging Technol 18(1):71–83

    Google Scholar 

  11. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):124–145

    Article  Google Scholar 

  12. Funakami R, Hiroshima K, Nishino J (2000) Successive approximation algorithm for cancellation of artifacts in DSA images. Jpn Soc Med Imaging Technol 18(3):199–206

    Google Scholar 

  13. Meijering EHW, Niessen WJ, Bakker J (2001) Reduction of patient motion artifacts in digital subtraction angiography: evaluation of a fast and fully automatic technique. Radiology 219:288–293

    Article  Google Scholar 

  14. Guthaner DF, Wexler L, Bradley B (1985) Digital subtraction angiography of coronary grafts: optimization of technique. AJR Am J Roentgenol 145:1185–1190

    Article  Google Scholar 

  15. Katrisis D, Lythall DA, Cooper IC, Crowther A, Webb-Peploe MM (1988) Assessment of coronary angioplasty: comparison of visual assessment, hand-held caliper measurement and automated digital quantitation. Cathet Cardiovasc Diagn 15:237–242

    Article  Google Scholar 

  16. Katritsis D, Lythall DA, Anderson MH, Cooper IC, Webb-Peploe MM (1988) Assessment of coronary angioplasty by an automated digital angiographic method. Am Heart J 116:1181–1187

    Article  Google Scholar 

  17. Katrisis D, Webb-Peploe MM (1990) Cardiac phase-related variability of border detection or densitometric quantitation of postangioplasty lumens. Am Heart J 120:537–543

    Article  Google Scholar 

  18. Booth DC, Nissen S, DeMaria AN (1985) Assessment of the severity of valvular regurgitation by digital subtraction angiography compared to cineangiography. Am Heart J 110:409–416

    Article  Google Scholar 

  19. Molloi S, Ersahin A, Tang J, Hicks J, Leung CY (1996) Quantification of volumetric coronary blood flow with dual-energy digital subtraction angiography. Circulation 93:1919–1927

    Article  Google Scholar 

  20. Myerowitz PD, Swanson DK, Turnipseed WD (1985) Applications of digital subtraction angiography in cardiovascular diagnosis. Surg Clin North Am 65(3):423–437

    Google Scholar 

  21. Hayashi N, Sakai T, Kitagawa M (1998) Nonlinear geometric warping of the mask image: a new method for reducing misregistration artifacts in digital subtraction angiography. Cardiovasc Intervent Radiol 21(2):138–141

    Article  Google Scholar 

  22. Dufresne TE, Sarwal A, Dhawan AP (1994) A gray-level thinning method for delineation and representation of arteries. Comput Med Imaging Graph 18(5):343–355

    Article  Google Scholar 

  23. Qian Y, Eiho S (2000) Morphological method for automatic extraction of the coronary arteries. Jpn Soc Med Imaging Technol 18(3):231–239

    Google Scholar 

  24. Meaney TF, Weinstein MA, Buonocore E, Pavlicek W, Borkowski GP, Gallagher JH, Sufka B, Maclntyre WJ (1980) Digital subtraction angiography of the human cardiovascular system. AJR Am J Roentgenol 135:1153–1160

    Article  Google Scholar 

  25. Myerowitz PD, Turnipseed WD, Swanson DK, Lysel MV, Peppler W, Mistretta C, Chopra PS, Berkoff H, Kroncke G, Hasegawa B, Steighorst M, Turski P, Crummy AB (1982) Digital sub-traction angiography as a method of screening for coronary artery disease during peripheral vascular angiography. Surgery 92(6):1042–1048

    Google Scholar 

  26. Bellamy GR, Yiannikas J, Detrano R, Simpfendorfer C, Salcedo EE (1986) Detection of multivessel disease after myocardial infarction using intravenous stress digital subtraction angiography. Radiology 161:685–689

    Google Scholar 

  27. Bentoutou Y, Taleb N, Mezouar MCE, Taleb M, Jetto L (2002) An invariant approach for image registration in digital subtraction angiography. Pattern Recognit 35:2853–2865

    Article  MATH  Google Scholar 

  28. Bentoutou Y, Taleb N (2005) A 3-D space-time motion detection for an invariant image registration approach in digital subtraction angiography. Comput Vis Image Underst 97:30–50

    Article  Google Scholar 

  29. Yamamoto M, Okura Y, Ishihara M, Kagemoto M, Harada K, Ishida T (2009) Development of digital subtraction angiography for coronary artery. J Digit Imaging 22(3):319–325

    Article  Google Scholar 

  30. Ministry of Health, Labour and Welfare, report of medical facility survey (2008), pp 21 (in Japanese)

    Google Scholar 

  31. Ministry of Health, Labour and Welfare, report of medical facility survey, (2011), pp 19 (in Japanese)

    Google Scholar 

  32. Shigemoto K, Takizawa H, Yamamoto S, Nakazawa T, Matsumoto T, Tateno Y, Iinuma T, Matsumoto M (2003) High-speed recognition of nodule shadow from chest X-ray CT images using template matching with third nodule-vessel model. Med Image Technol 21(2):147–156 (in Japanese)

    Google Scholar 

  33. Lee Y, Hara T, Fujita H (2000) Evaluation of GA template matching method by simulation using chest helical X-ray CT images. Med Image Inf Sci 17(3):118–129 (in Japanese)

    Google Scholar 

  34. Lee Y, Hara T, Fujita H, Itoh S, Ishigaki ST (2001) Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging 20(7):595–604

    Article  Google Scholar 

  35. Armato SG 3rd, Giger ML, Moran CJ, Blackburn JT, Doi K, MacMahon H (1999) Computerized detection of pulmonary nodules on CT scans. RadioGraphics 19(5):1303–1311

    Article  Google Scholar 

  36. Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two- and three dimensional CT scans. Med Phys 30(8):2040–2051

    Article  Google Scholar 

  37. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K (2004) Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol 11(6):617–629

    Article  Google Scholar 

  38. Giger ML, Doi K, MacMahon K (1998) Automated detection of nodules in peripheral lung fields. Med Phys 15(2):158–166

    Article  Google Scholar 

  39. Yamamoto S, Tanaka I, Senda M, Tateno Y, Iinuma T, Matsumoto T, Matsumoto M (1994) Image processing for computer-aided diagnosis of lung cancer by CT (LSCT). Syst Comput Jpn 25:67–79

    Article  Google Scholar 

  40. Jiang H, Yamamoto S, Iisaku S, Mtsumoto M, Tateno Y, Iinuma T, Matsumoto T(1999) Computer-aided diagnosis system for lung cancer screening by CT. In: Doi K, MacMahon H, Giger ML, Hoffmann KR (eds) Computer-aided diagnosis in medical imaging. Excerpta Medica International Congress Series 1182, pp125–130

    Google Scholar 

  41. Ukai Y, Niki N, Satoh H, Eguchi K, Mori K, Ohmatsu H, Kakinuma R, Kaneko M, Moriyama N (2000) Computer aided diagnosis system for lung cancer based on retrospective helical CT image. Proc SPIE 3979:1028–1039

    Article  Google Scholar 

  42. Armato SG 3rd, Li F, Giger ML, MacMahon H, Sone S, Doi K (2002) Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology 225(3):685–692

    Article  Google Scholar 

  43. Wormanns D, Fiebich M, Saidi M, Diederich S, Heindel W (2002) Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur Radiol 12(5):1052–1057

    Article  Google Scholar 

  44. Gurcan MN, Sahiner B, Petrick N, Chan HP, Kazerooni EA, Cascade PN, Hadjiiski L (2002) Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys 29(11):2552–2558

    Article  Google Scholar 

  45. Brown MS, Goldin JG, Suh RD, McNitt-Gray MF, Sayre JW, Aberle DR (2003) Lung micronodules: automated method for detection at thin-section CT − initial experience. Radiology 226(1):256–262

    Article  Google Scholar 

  46. Yamamoto M, Kawashita I, Okura Y, Akiyama M, Fu-jikawa K, Kagemoto M, Mitogawa Y, Ubagai T, Ishine M, Ito K, Ishida T (2008) Improvement of overall performance for lung nodule detection in chest CT images. Jpn J Radiol Technol 64(3):316–324

    Article  Google Scholar 

  47. Yoshimura H, Giger ML, Doi K, MacMahon H, Montner SM (1992) Computerized scheme for the detection of pulmonary nodules: nonlinear filtering technique. Invest Radiol 27:124–129

    Article  Google Scholar 

  48. Katsuragawa S, Doi K, MacMahon H, Monnier-Cholley L, Morishita J, Ishida T (1996) Quantitative analysis of geometric-pattern features of interstitial infiltrates in digital chest radiographs: preliminary results. J Digit Imaging 9:137–144

    Article  Google Scholar 

  49. Ishida T, Katsuragawa S, Kabayashi T, MacMahon H, Doi K (1997) Computerized analysis of interstitial disease in chest radiographs: improvement of geometric pattern feature analysis. Med Phys 24:915–924

    Article  Google Scholar 

  50. Yamamoto M, Ishida T, Kawashita I, Kagemoto M, Fujikawa K, Mitogawa Y, Ubagai T, Ishine M, Ito K, Akiyama M (2006) Development of computer-aided diagnostic system for detection of lung nodules in three-dimension computed tomography images. Jpn J Radiol Technol 62(4):555–564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ishida, T., Yamamoto, M., Okura, Y. (2014). Subtraction Techniques for CT and DSA and Automated Detection of Lung Nodules in 3D CT. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics