Image Analysis Techniques for the Quantification of Brain Tumors on MR Images

  • Nishant Verma
  • Matthew C. Cowperthwaite
  • Mark G. Burnett
  • Mia K. Markey


Advances in neuro-imaging methods over the last few decades have enabled collection of detailed anatomical and functional information about the brain. Although functional imaging provides rich information for diagnosis and treatment planning, practical considerations such as cost and availability currently limit its clinical utility. As a result, structural imaging methods that provide detailed information about the anatomical structures of the brain are routinely used to manage brain tumors in the clinical setting. Typically, radiological images are visually inspected and interpreted by trained health professionals to detect gross anatomical abnormalities, which are associated with various types of brain tumors. This approach entails generally qualitative interpretations that do not fully realize the potential of modern imaging technologies. Furthermore, several types of brain tumors manifest with gross anatomical changes that are visually similar, which limits the use of MRI in differentiating between them. Computer-aided image analysis enables a quantitative description of brain anatomy and detection of subtle, but important, anatomical changes that may be difficult to detect by visual inspection. Therefore, it’s imperative to develop sophisticated image analysis tools that can handle the highly complex and varied organization of the brain across individuals. Such tools will form the foundation for decision support systems (DSSs) to aid health professionals in more precise and personalized management of brain tumors.


Decision Support System Brain Tumor Patient Intensity Inhomogeneity Simultaneous Perturbation Stochastic Approximation Angular Radial Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berner ES (2009) Clinical decision support systems: state of the art. Agency for Healthcare Research and Quality (AHRQ), Rockville (publication no. 09-0069-EF)Google Scholar
  2. 2.
    Noble M, Bruening W, Uhl S, Schoelles K (2009) Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis. Arch Gynecol Obstet 279(6):881–890CrossRefGoogle Scholar
  3. 3.
    Chan H-P, Hadjiiski L, Zhou C, Sahiner B (2008) Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography—a review. Acad Radiol 15(5):535–555CrossRefGoogle Scholar
  4. 4.
    Weisenfeld NL, Warfteld SK (2004) Normalization of joint image-intensity statistics in MRI using the Kullback–Leibler divergence. Paper presented at IEEE international symposium on biomedical imaging: nano to macro, 15–18 April 2004, pp 101–104Google Scholar
  5. 5.
    Hellier P (2003) Consistent intensity correction of MR images. In: Proceedings of the international conference on image processing (ICIP), vol 1, Rennes, 14–17 September 2003, pp 1–1109Google Scholar
  6. 6.
    Jager F, Deuerling-Zheng Y, Frericks B, Wacker F, Hornegger J (2006) A new method for MRI intensity standardization with application to lesion detection in the brain. In: Kobbelt L et al (eds) Vision modeling and visualization 2006 proceedings. IOS Press, pp 269–276Google Scholar
  7. 7.
    Bergeest J-P, Jäger F, Tolxdorff T et al (2008) A comparison of five methods for signal intensity standardization in MRI, bildverarbeitung für die medizin 2008. Springer, Berlin, pp 36–40CrossRefGoogle Scholar
  8. 8.
    Nyul LG, Udupa JK, Xuan Z (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19(2):143–150CrossRefGoogle Scholar
  9. 9.
    Nyúl LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42(6):1072–1081CrossRefGoogle Scholar
  10. 10.
    Gasser T, Sroka L, Jennen-Steinmetz C (1986) Residual variance and residual pattern in nonlinear regression. Biometrika 73(3):625–633MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–885CrossRefGoogle Scholar
  12. 12.
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113CrossRefGoogle Scholar
  13. 13.
    Klein A, Andersson J, Ardekani BA et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3):786–802CrossRefGoogle Scholar
  14. 14.
    Ripollés P, Marco-Pallarés J, de Diego-Balaguer R et al (2012) Analysis of automated methods for spatial normalization of lesioned brains. Neuroimage 60(2):1296–1306CrossRefGoogle Scholar
  15. 15.
    Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J (2005) Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142(1):67–76CrossRefGoogle Scholar
  16. 16.
    Madabhushi A, Udupa JK (2005) Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans Med Imaging 24(5):561–576CrossRefGoogle Scholar
  17. 17.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRefGoogle Scholar
  18. 18.
    Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE Computer Society conference on computer vision and pattern recognition (CVPR), vol 2, 20–25 June 2005, pp 60–65Google Scholar
  19. 19.
    Wiest-Daessle N, Prima S, Coup P, Morrissey SP, Barillot C (2008) Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: Proceedings of the 11th international conference on medical image computing and computer-assisted intervention, part II, Springer, New York, pp 171–179Google Scholar
  20. 20.
    Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M (2008) MRI denoising using non-local means. Med Image Anal 12(4):514–523CrossRefGoogle Scholar
  21. 21.
    Gal Y, Mehnert AJH, Bradley AP, McMahon K, Kennedy D, Crozier S (2010) Denoising of dynamic contrast-enhanced MR images using dynamic nonlocal means. IEEE Trans Med Imaging 29(2):302–310CrossRefGoogle Scholar
  22. 22.
    Anand CS, Sahambi J (2010) Wavelet domain non-linear filtering for MRI denoising. Magn Reson Imaging 28:842–861CrossRefGoogle Scholar
  23. 23.
    Simmons A TP, Barker GJ, Arridge SR (1994) Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 32(1):121–128 (Wiley Subscription Services, Inc.)Google Scholar
  24. 24.
    Johnston B, Atkins MS, Mackiewich B, Anderson M (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging 15(2):154–169CrossRefGoogle Scholar
  25. 25.
    Axel L, Costantini J, Listerud J (1987) Intensity correction in surface coil MR imaging. Amer J Roentgenol 148:418–420CrossRefGoogle Scholar
  26. 26.
    Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97CrossRefGoogle Scholar
  27. 27.
    Likar B, Viergever MA, Pernuˇs F (2001) Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 20(12):1398–1410CrossRefGoogle Scholar
  28. 28.
    Mangin J-F (2000) Entropy minimization for automatic correction of intensity nonuniformity. Presented at the IEEE workshop on mathematical methods in biomedical image analysis, Hilton Head Island, pp 162–169Google Scholar
  29. 29.
    Bansal R, Staib LH, Peterson BS (2004) Correcting nonuniformities in MRI intensities using entropy minimization based on an elastic model. In: Medical image computing and computer-assisted intervention (MICCAI 2004). Springer, Berlin, pp 78–86Google Scholar
  30. 30.
    Likar B, Viergever M A, Pernus F (2000) Retrospective correction of MR intensity inhomogeneity by information minimization. In: Medical image computing and computer-assisted intervention (MICCAI 2000). Springer, Berlin, pp 375–384Google Scholar
  31. 31.
    Dawant BM, Zijdenbos AP, Margolin RA (1993) Correction of intensity variations in MR images for computer-aided tissues classification. IEEE Trans Med Imaging 12(4):770–781CrossRefGoogle Scholar
  32. 32.
    Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908CrossRefGoogle Scholar
  33. 33.
    Marroquin J, Vemuri B, Botello S, Calderon E, Fernandez-Bouzas A (2002) An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21(8):934–945CrossRefGoogle Scholar
  34. 34.
    Bach Cuadra M, Cammoun L, Butz T, Cuisenaire O, Thiran J (2005) Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 24(12):1548–1565CrossRefGoogle Scholar
  35. 35.
    Ferreira da Silva AR (2007) A dirichlet process mixture model for brain MRI tissue classification. Med Image Anal 11(2):169–182CrossRefGoogle Scholar
  36. 36.
    Greenspan H, Ruf A, Goldberger J (2006) Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging 25(9):1233–1245CrossRefGoogle Scholar
  37. 37.
    Likar B, Derganc J, Pernuˇs F (2002) Segmentation-based retrospective correction of intensity non-uniformity in multi-spectral MR images. In: Proceedings of SPIE medical imaging, image process, San Diego, vol 4684, pp 1531–1540Google Scholar
  38. 38.
    Derganc J, Likar B, Pernuˇs F (2002) Nonparametric segmentation of multispectral MR images incorporating spatial and intensity information. In: Proceedings of SPIE medical imaging, image process, San Diego, vol 4684, pp 391–400Google Scholar
  39. 39.
    Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek J (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3:672–682CrossRefGoogle Scholar
  40. 40.
    Zhang DQ, Chen SC (2004) A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif Intell Med 32(1):37–50CrossRefGoogle Scholar
  41. 41.
    Acton ST, Mukherjee DP (2000) Scale space classification using area morphology. IEEE Trans Image Process 9(4):623–635CrossRefGoogle Scholar
  42. 42.
    Siyal M, Yu L (2005) An intelligent modified fuzzy C-means based algorithm for bias estimation and segmentation of brain MRI. Pattern Recogn Lett 26(13):2052–2062CrossRefGoogle Scholar
  43. 43.
    Horváth J (2006) Image segmentation using fuzzy c-means. In: Proceedings of SAMI, pp 144–151Google Scholar
  44. 44.
    Diplaros A, Vlassis N, Gevers T (2007) A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans Neural Netw 18(3):798–808CrossRefGoogle Scholar
  45. 45.
    Wang J (2007) Discriminative Gaussian mixtures for interactive image segmentation. In: IEEE international conference on acoustics, speech and signal processing, vol 1, pp 1–601Google Scholar
  46. 46.
    Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Li SZ (1994) Markov random field models in computer vision. Lect Notes Comput Sci 801:361–370CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefGoogle Scholar
  49. 49.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277CrossRefMATHGoogle Scholar
  50. 50.
    Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Verma N, Muralidhar GS, Bovik AC, Cowperthwaite MC, Markey MK (2011), Model-driven, probabilistic level set based segmentation of magnetic resonance images of the brain. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 2821–2824Google Scholar
  52. 52.
    Zacharaki E, Kanas V, Davatzikos C (2011) Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg 6(6):821–828CrossRefGoogle Scholar
  53. 53.
    Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618CrossRefGoogle Scholar
  54. 54.
    Ming-Kuei H (1962) Visual pattern recognition by moment invariants. IEEE Trans Inf Theory 8(2):179–187CrossRefMATHGoogle Scholar
  55. 55.
    Sadjadi FA, Hall EL (1980) Three-dimensional moment invariants. IEEE Trans on Pattern Anal Mach Intell 2(2):127–136CrossRefMATHGoogle Scholar
  56. 56.
    Ng B, Abugharbieh R, Huang X, McKeown MJ (2006) Characterizing fMRI activations within regions of interest (ROIs) using 3D moment invariants. In: Conference on computer vision and pattern recognition workshop (CVPRW’06), June 2006, pp 63–63Google Scholar
  57. 57.
    Reiss TH (1992) Features invariant to linear transformations in 2D and 3D. In: Proceedings of 11th international conference on pattern recognition (ICPR’92), IEEE Computer Society Press, Hague, vol III, pp 493–496Google Scholar
  58. 58.
    Shen L, Rangayyan RM, Desautels JEL (1994) Application of shape analysis to mammographic calcifications. IEEE Trans Med Imaging 13(2):263–274CrossRefGoogle Scholar
  59. 59.
    Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA (1997) Measures of acutance and shape for classification of breast tumors. IEEE Trans Med Imaging 16(6):799–810CrossRefGoogle Scholar
  60. 60.
    Barnsley M (1988) Fractals everywhere: the first course in deterministic fractal geometry. AcademicGoogle Scholar
  61. 61.
    Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers &Amp; Geosciences 12(5):713–722CrossRefGoogle Scholar
  62. 62.
    Mandelbrot BB, Ness JWV (1968) Fractional brownian motions, fractional noises and applications. SIAM Rev 10(4):422–437MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Rossmanith C, Handels H, Pöppl SJ, Rinast E, Weiss HD (1996) Characterisation and classification of brain tumours in three-dimensional MR image sequences. In: Visualization in biomedical computing. Springer, Berlin, pp 429–438Google Scholar
  64. 64.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York (Section, 10, l)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nishant Verma
    • 1
    • 2
  • Matthew C. Cowperthwaite
    • 2
  • Mark G. Burnett
    • 2
  • Mia K. Markey
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.NeuroTexas Institute, St. David’s HealthCareAustinUSA
  3. 3.Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations