Renal Cancer pp 93-111 | Cite as

Molecular Imaging for Renal Cell Carcinoma

Chapter

Abstract

New technological advances allow personalized medicine to be possible for staging, therapeutic planning, and monitoring the therapeutic response of cancer patients. Molecular imaging such as positron emission tomography (PET) has been widely used in clinical oncology. Currently, 18F-labeled fluorodeoxyglucose (18F-FDG) PET is used in more than 90 % of all molecular imaging procedures. Success of the 18F-FDG-PET is also recognized with certain drawbacks. Special attention has been devoted to the development of new tracers and technologies for better evaluation of tumor burden. Accurate and reliable imaging studies are needed to identify cancer at early stage, to proper stage for treatment plans, and to provide biomarkers for optimal assessment of therapeutic response. Targeted therapies for metastatic renal cell carcinoma (mRCC) have become the standard of practice. Molecular imaging is likely to play a greater role in the selection of patients with mRCC for treatment and for monitoring response. In this chapter, we outline the clinical utility of FDG-PET (PET/CT) for RCC and brief discussion of new radiotracers under investigation.

Keywords

Migration Hydration Lactate Tyrosine Adenoma 

References

  1. 1.
    Choudhary S, Sudarshan S, Choyke PL, Prasad SR. Renal cell carcinoma: recent advances in genetics and imaging. Semin Ultrasound CT MR. 2009;30(4): 315–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170(6 Pt 1): 2163–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Kovacs G, Akhtar M, Beckwith BJ, Burgert P, Cooper CS, Delahunt B, Eble JN, Fleming S, Ljungberg B, Medeiros J, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183:131–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Vasudevan A, Davies RJ, Shannon BA, Cohen RJ. Incidental renal tumours: the frequency of benign lesions and the role of preoperative core biopsy. BJU Int. 2006;97(5):946–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramdave S, Thomas GW, Berlangieri SU, Bolton DM, Davis I, Danguy HT, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001;166(3):825–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Goldberg MA, Mayo-Smith WW, Papanicolaou N, Fischman AJ, Lee MJ. FDG PET characterization of renal masses: preliminary experience. Clin Radiol. 1997;52(7):510–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Aide N, Cappele O, Bottet P, Bensadoun H, Regeasse A, Comoz F, et al. Efficiency of [(18)F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003;30(9):1236–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Kang DE, White Jr RL, Zuger JH, Sasser HC, Teigland CM. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol. 2004;171(5):1806–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Lidgren A, Bergh A, Grankvist K, Rasmuson T, Ljungberg B. Glucose transporter-1 expression in renal cell carcinoma and its correlation with hypoxia inducible factor-1 alpha. BJU Int. 2008;101(4): 480–4.PubMedGoogle Scholar
  10. 10.
    Kayani I, Avril N, Bomanji J, Chowdhury S, Rockall A, Sahdev A, Nathan P, Wilson P, Shamash J, Sharpe K, Lim L, Dickson J, Ell P, Reynolds A, Powles T, et al. Sequential FDG-PET/CT as a biomarker of response to Sunitinib in the metastatic clear cell renal cancer. Clin Cancer Res. 2011;17(18):6021–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Bouchelouche K, Oehr P. Recent developments in urologic oncology: positron emission tomography molecular imaging. Curr Opin Oncol. 2008;20(3): 321–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Krajewski KM, Giardino AA, Zukotynski K, Van den Abbeele AD, Pedrosa I. Imaging in renal cell carcinoma. Hematol Oncol Clin North Am. 2011;25(4):687–715.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang J, Lefkowitz RA, Ishill NM, Wang L, Moskowitz CS, Russo P, Eisenberg H, Hricak H, et al. Solid renal cortical tumors: differentiation with CT. Radiology. 2007;244(2):494–504.PubMedCrossRefGoogle Scholar
  14. 14.
    Kochhar R, Brown RK, Wong CO, Dunnick NR, Frey KA, Manoharan P. Role of FDG PET/CT in imaging of renal lesions. J Med Imaging Radiat Oncol. 2010;54(4):347–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Blake MA, McKernan M, Setty B, Fischman AJ, Mueller PR. Renal oncocytoma displaying intense activity on 18F-FDG PET. AJR Am J Roentgenol. 2006;186(1):269–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Beck SD, Patel MI, Snyder ME, et al. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol. 2004;11:71–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Lawrentschuk N, Davis ID, Bolton DM, Scott AM. Functional imaging of renal cell carcinoma. Nat Rev Urol. 2010;7(5):258–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Park JW, Jo MK, Lee HM. Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int. 2009;103(5):615–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Kocher F, Grimmel S, Hautmann R, et al. Preoperative lymph node staging in patients with kidney and ­urinary bladder neoplasm. J Nucl Med. 1994;35(suppl):223.Google Scholar
  20. 20.
    Khosa F, Otero HJ, Prevedello LM, Rybicki FJ, Di Salvo DN. Imaging presentation of venous thrombosis in patients with cancer. AJR Am J Roentgenol. 2010;194(4):1099–108.PubMedCrossRefGoogle Scholar
  21. 21.
    Itano NB, Blute ML, Spotts B, Zincke H. Outcome of isolated renal cell carcinoma fossa recurrence after nephrectomy. J Urol. 2000;164:322–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Majhail NS, Urbain JL, Albani JM, Kanvinde MH, Rice TW, Novick AC, et al. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol. 2003;21(21):3995–4000.PubMedCrossRefGoogle Scholar
  23. 23.
    Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med. 2004;34(4):274–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Mueller-Lisse UG, Mueller-Lisse UL, Meindl T, Coppenrath E, Degenhart C, Graser A, et al. Staging of renal cell carcinoma. Eur Radiol. 2007;17(9):2268–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Hyodo T, Sugawara Y, Tsuda T, Yanagihara Y, Aoki K, Tanji N, et al. Widespread metastases from sarcomatoid renal cell carcinoma detected by (18)F-FDG positron emission tomography/computed tomography. Jpn J Radiol. 2009;27(2):111–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar R, Shamim SA, Shandal V, Sharma P, Gadodia A, Malhotra A. FDG PET/CT in detection of adrenal metastasis in patients with renal cell carcinoma. Clin Nucl Med. 2011;36(7):513–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Brouwers AH, Dorr U, Lang O, et al. 131I-cG250 monoclonal antibody immunoscintigraphy versus [18F] FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl Med Commun. 2002;23:229–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Safaei A, Figlin R, Hoh CK, Silverman DH, Seltzer M, Phelps ME, et al. The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol. 2002;57(1):56–62.PubMedGoogle Scholar
  29. 29.
    Eggener SE, Yossepowitch O, Pettus JA, Snyder ME, Motzer RJ, Russo P. Renal cell carcinoma recurrence after nephrectomy for localized disease: predicting survival from time of recurrence. J Clin Oncol. 2006;24:3101–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Chae EJ, Kim JK, Kim SH, Bae SJ, Cho KS. Renal cell carcinoma: analysis of postoperative recurrence patterns. Radiology. 2005;234:189–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Dinney CP, Awad SA, Gajewski JB, et al. Analysis of imaging modalities, staging systems, and prognostic indicators for renal cell carcinoma. Urology. 1992;39:122–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Flanigan RC, Salmon SE, Blumenstein BA, et al. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med. 2001;345:1655–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Griffin N, Gore ME, Sohaib SA. Imaging in metastatic renal cell carcinoma. AJR Am J Roentgenol. 2007;189(2):360–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Simunek R, Sirotek L, Sefr R. Renal cancer metastasis into common bile duct. Rozhl Chir. 2011;90(3): 190–3.PubMedGoogle Scholar
  35. 35.
    Stinauer MA, Kavanagh BD, Schefter TE, Gonzalez R, Flaig T, Lewis K, et al. Stereotactic body radiation therapy for melanoma and renal cell carcinoma: impact of single fraction equivalent dose on local control. Radiat Oncol. 2011;6:34.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez Martinez de Llano S, Jimenez-Vicioso A, Mahmood S, Carreras-Delgado JL. Clinical impact of (18)F-FDG PET in management of patients with renal cell carcinoma. Rev Esp Med Nucl. 2010;29(1):12–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Gervais DA, Kalva S, Thabet A. Percutaneous image-guided therapy of intra-abdominal malignancy: imaging evaluation of treatment response. Abdom Imaging. 2009;34(5):593–609.PubMedCrossRefGoogle Scholar
  38. 38.
    Masterson TA, Russo P. A case of port-site recurrence and locoregional metastasis after laparoscopic partial nephrectomy. Nat Clin Pract Urol. 2008;5(6): 345–9.PubMedGoogle Scholar
  39. 39.
    Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82(3):1016–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Fortes DL, Allen MS, Lowe VJ, Shen KH, Wigle DA, Cassivi SD, et al. The sensitivity of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of metastatic pulmonary nodules. Eur J Cardiothorac Surg. 2008;34(6):1223–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Kollender Y, Bickels J, Price WM, et al. Metastatic renal cell carcinoma of bone: indications and technique of surgical intervention. J Urol. 2000;164: 1505–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Dilhuydy MS, Durieux A, Pariente A, de Clermont H, Pasticier G, Monteil J, et al. PET scans for decision-making in metastatic renal cell carcinoma: a single-institution evaluation. Oncology. 2006;70(5): 339–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesion. J Clin Oncol. 1998;16:3375–9.PubMedGoogle Scholar
  44. 44.
    Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med. 1998;25:1244–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu HC, Yen RF, Shen YY, Kao CH, Lin CC, Lee CC. Comparing whole- body 18F-2-deoxyglucose positron emission tomography and technetium- 99m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas: a preliminary report. J Cancer Res Clin Oncol. 2002;128:503–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49(1):68–78.PubMedCrossRefGoogle Scholar
  47. 47.
    Nakatani K, Nakamoto Y, Saga T, Higashi T, Togashi K. The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol. 2011;79(1): 29–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999;17:2530–40.PubMedGoogle Scholar
  49. 49.
    Motzer RJ, Bacik J, Schwartz LH, Reuter V, Russo P, Marion S, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol. 2004;22(3):454–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu D, Ma T, Niu Z, Zheng J, Han A, Zhao S, et al. Prognostic significance of metabolic parameters measured by (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Lung Cancer. 2011;73:332–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17:115–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys. 2004;59:1295–3000.PubMedCrossRefGoogle Scholar
  54. 54.
    Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, Rusch V, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22:3255–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee YY, Choi CH, Kim CJ, Kang H, Kim TJ, Lee JW, Lee JH, Bae DS, Kim BG. The prognostic significance of the SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) of the cervical tumor in PET imaging for early cervical cancer: preliminary results. Gynecol Oncol. 2009;115:65–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Namura K, Minamimoto R, Yao M, Makiyama K, Murakami T, Sano F, Hayashi N, Tateishi U, et al. Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer. 2010;10:667.PubMedCrossRefGoogle Scholar
  57. 57.
    Revheim ME, Winge-Main AK, Hagen G, Fjeld JG, Fossa SD, Lilleby W. Combined positron emission tomography/computed tomography in sunitinib therapy assessment of patients with metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol). 2011;23(5): 339–43.CrossRefGoogle Scholar
  58. 58.
    Murdoch D, Sager J. Will targeted therapy hold its promise? An evidence-based review. Curr Opin Oncol. 2008;20(1):104–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Abel EJ, Culp SH, Tannir NM, Matin SF, Tamboli P, Jonasch E, et al. Primary tumor response to targeted agents in patients with metastatic renal cell carcinoma. Eur Urol. 2011;59(1):10–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.PubMedCrossRefGoogle Scholar
  61. 61.
    Schwartz LH, Bogaerts J, Ford R, Shankar L, Therasse P, Gwyther S, et al. Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer. 2009;45(2):261–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Jennens RR, Rosenthal MA, Lindeman GJ, Michael M. Complete radiological and metabolic response of metastatic renal cell carcinoma to SU5416 (semaxanib) in a patient with probable von Hippel-Lindau syndrome. Urol Oncol. 2004;22(3):193–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Lyrdal D, Boijsen M, Suurkula M, Lundstam S, Stierner U. Evaluation of sorafenib treatment in ­metastatic renal cell carcinoma with 2-fluoro-2- ­deoxyglucose positron emission tomography and computed tomography. Nucl Med Commun. 2009; 30(7):519–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Vercellino L, Bousquet G, Baillet G, Barre E, Mathieu O, Just PA, et al. 18F-FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm. 2009;24(1):137–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Hillner BE, Liu D, Coleman RE, Shields AF, Gareen IF, Hanna L, et al. The national oncologic PET registry (NOPR): design and analysis plan. J Nucl Med. 2007;48(11):1901–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Lindsay MJ, Siegel BA, Tunis SR, Hillner BE, Shields AF, Carey BP, et al. The national oncologic PET registry: expanded medicare coverage for PET under coverage with evidence development. AJR Am J Roentgenol. 2007;188(4):1109–13.PubMedCrossRefGoogle Scholar
  67. 67.
    Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the national oncologic PET registry. J Clin Oncol. 2008;26(13): 2155–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Hillner BE, Siegel BA, Shields AF, Duan F, Gareen IF, Hanna L, et al. Impact of dedicated brain PET on intended patient management in participants of the national oncologic PET registry. Mol Imaging Biol. 2011;13(1):161–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49(12):1928–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Bui MH, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res. 2003;9: 802–11.PubMedGoogle Scholar
  71. 71.
    Steffens MG, Boerman OC, Oosterwijk-Wakka JC, et al. Targeting of renal cell carcinoma with iodine-131-labeled chimeric monoclonal antibody G250. J Clin Oncol. 1997;15:1529–37.PubMedGoogle Scholar
  72. 72.
    Brouwers AH, Dorr U, Lang O, Boerman OC, Oyen WJ, Steffens MG, et al. 131 I-cG250 monoclonal antibody immunoscintigraphy versus [18F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl Med Commun. 2002;23(3):229–36.PubMedCrossRefGoogle Scholar
  73. 73.
    Brouwers A, Verel I, Van Eerd J, Visser G, Steffens M, Oosterwijk E, et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother Radiopharm. 2004;19(2):155–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Leung K. 89Zr-N-Succinyldesferal-chimeric monoclonal antibody G250. 2004.Google Scholar
  75. 75.
    Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gonen M, Ruan S, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I–cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8(4):304–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Leung K. 124I-Chimeric monoclonal antibody G250. 2004.Google Scholar
  77. 77.
    Liu G, Jeraj R, Vanderhoek M, Perlman S, Kolesar J, Harrison M, et al. Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with sunitinib malate. Clin Cancer Res. 2011;17(24):7634–44.PubMedCrossRefGoogle Scholar
  78. 78.
    Lawrentschuk N, Poon AM, Foo SS, Putra LG, Murone C, Davis ID, et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int. 2005;96(4): 540–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Hugonnet F, Fournier L, Medioni J, Smadja C, Hindie E, Huchet V, et al. Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: an 18F-fluoromisonidazole PET/CT study. J Nucl Med. 2011;52(7):1048–55.PubMedCrossRefGoogle Scholar
  80. 80.
    Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46(8):1333–41.PubMedGoogle Scholar
  81. 81.
    Beer AJ, Haubner R, Wolf I, Goebel M, Luderschmidt S, Niemeyer M, et al. PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. J Nucl Med. 2006;47(5): 763–9.PubMedGoogle Scholar
  82. 82.
    Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging. 2004;3(2):96–104.PubMedCrossRefGoogle Scholar
  83. 83.
    Li ZB, Wu Z, Chen K, Chin FT, Chen X. Click chemistry for (18)F-labeling of RGD peptides and microPET imaging of tumor integrin alphavbeta3 expression. Bioconjug Chem. 2007;18(6):1987–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, et al. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J Nucl Med. 2004;45(10):1776–83.PubMedGoogle Scholar
  85. 85.
    Jin ZH, Furukawa T, Galibert M, Boturyn D, Coll JL, Fukumura T, et al. Noninvasive visualization and quantification of tumor alphaVbeta3 integrin expression using a novel positron emission tomography probe, 64Cu-cyclam-RAFT-c(-RGDfK-)4. Nucl Med Biol. 2011;38(4):529–40.PubMedCrossRefGoogle Scholar
  86. 86.
    Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging. 2007;34(11):1823–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Dijkgraaf I, Yim CB, Franssen GM, Schuit RC, Luurtsema G, Liu S, et al. PET imaging of alphavbeta integrin expression in tumours with Ga- labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging. 2011;38(1):128–37.PubMedCrossRefGoogle Scholar
  88. 88.
    Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, et al. Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med. 2005;46(4):658–66.PubMedGoogle Scholar
  89. 89.
    Bansal A, Shuyan W, Hara T, Harris RA, Degrado TR. Biodisposition and metabolism of [(18)F]fluorocholine in 9L glioma cells and 9L glioma- bearing fisher rats. Eur J Nucl Med Mol Imaging. 2008;35(6):1192–203.PubMedCrossRefGoogle Scholar
  90. 90.
    DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2001;61(1):110–7.PubMedGoogle Scholar
  91. 91.
    Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW, Willemsen AT, et al. Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med. 2002;43(2):167–72.PubMedGoogle Scholar
  92. 92.
    Schillaci O, Calabria F, Tavolozza M, Ciccio C, Carlani M, Caracciolo CR, et al. 18F-choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer. Nucl Med Commun. 2010;31(1):39–45.PubMedCrossRefGoogle Scholar
  93. 93.
    Middendorp M, Maute L, Sauter B, Vogl TJ, Grunwald F. Initial experience with 18F-fluoroethylcholine PET/CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann Nucl Med. 2010;24(6):441–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Maleddu A, Pantaleo MA, Castellucci P, Astorino M, Nanni C, Nannini M, et al. 11C-acetate PET for early prediction of sunitinib response inmetastatic renal cell carcinoma. Tumori. 2009;95(3):382–4.PubMedGoogle Scholar
  95. 95.
    Kotzerke J, Linne C, Meinhardt M, Steinbach J, Wirth M, Baretton G, et al. [1-(11)C]acetate uptake is not increased in renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2007;34(6):884–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Fox Chase Cancer CenterPhiladelphiaUSA
  2. 2.Department of RadiologyLahey Clinic Medical CenterBurlingtonUSA

Personalised recommendations