Skip to main content

MALDI: A Very Useful UV Light-Induced Process…That Still Remains Quite Obscure

  • Chapter
  • First Online:
Book cover Fundamentals of Mass Spectrometry

Abstract

The matrix-assisted laser desorption ionization (MALDI) process constitutes a complex mixture of events, involving optical and mechanical phenomena, as well as thermodynamic and physicochemical processes of phase transition and ionization. The experiment is based on irradiation of the surface of a solid sample that is a mixture of a photosensitizer material (the matrix) and analyte(s) with a short-pulse UV laser. A successful MALDI analysis involves a number of crucial steps, namely, sample preparation, UV excitation of the matrix (photosensitizer)–analyte sample and disintegration of the condensed phase, generation and separation of charges and ionization of analyte and matrix molecules, and, finally, in the analysis step, ion separation according to the mass-to-charge ratio in the mass spectrometer, and detection (Fig. 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1998) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Comunn Mass Spectrom 2:151–153

    Article  Google Scholar 

  2. Karas M, Hillenkamp F (1998) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  Google Scholar 

  3. Hillenkamp F, Peter-Katalinić J (eds) (2007) MALDI MS. A practical guide to instrumentation, methods and applications. Wiley-VCH, Weinheim

    Google Scholar 

  4. Cole RB (2010) Electrospray and MALDI mass spectrometry. Fundamentals, instrumentation, practicalities, and biological applications. Wiley, London

    Book  Google Scholar 

  5. Phipps C (ed) (2007) Laser ablation and its applications, 2nd edn. Springer, New York

    Google Scholar 

  6. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH, New York

    Google Scholar 

  7. Turro NJ, Ramamurthy V, Scaiano JC (2010) Modern molecular photochemistry of organic molecules. University Science Books, Sausalito

    Google Scholar 

  8. Cohen-Tannoudji C, Diu B, Laloė F (1997) Quantum mechanics. Wiley, New York

    Google Scholar 

  9. Atkins PW (1986) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  10. Birks JB (1975) Organic molecular photophysics vols I and II. Wiley, Chichester

    Google Scholar 

  11. Simons JP (1971) Photochemistry and spectroscopy. Wiley-Interscience, London

    Google Scholar 

  12. Valeur B (2002) Molecular fluorescence. Wiley-VCH, Weinheim

    Google Scholar 

  13. Zander C, Enderlein J, Keller RA (2002) Single molecule detection in solution. Wiley-VCH, Berlin

    Book  Google Scholar 

  14. Jablonski A (1935) Über den mechanismus der photolumineszens von farbestoffphosphoren. Z Phys 94:38–46

    Article  CAS  Google Scholar 

  15. Lakowicz JR (ed) (1991) Topics in fluorescence spectroscopy, vol 1 and 2. Plenum, New York

    Google Scholar 

  16. Cheung HC (1991) Resonance energy transfer. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2. Plenum, New York

    Google Scholar 

  17. Chiang CK, Chen WT, Chang HT (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40:1269–1281

    Article  CAS  Google Scholar 

  18. Lane N (2001) The grand challenges of nanotechnology. J Nanopart Res 3:95–103

    Article  Google Scholar 

  19. Karplus M, Porter RN (1970) Atoms and molecules; an introduction for students of physical chemistry. W. A. Benjamin, New York

    Google Scholar 

  20. Harrison WA (1980) Electronic structure and the properties of solids. Freeman, San Francisco

    Google Scholar 

  21. Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductors crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  CAS  Google Scholar 

  22. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Harrison WA (1989) Electronic structure and the properties of solids: the physics of the chemical bond. Dover Publications, Dover

    Google Scholar 

  24. Klimov VI, McBranch DW, Leatherdale CA, Bawendi MG (1999) Electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B 60:13740–13749

    Article  CAS  Google Scholar 

  25. Vertes A (2007) Laser-mater interaction in novel regimes. In: Phipps C (ed) Laser ablation and its applications. Springer, New York

    Google Scholar 

  26. Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  27. Rosencwaig A, Gersho A (1976) Theory of photoacoustic effect in solids. J Appl Phys 47:64–69

    Article  Google Scholar 

  28. Phipps C (ed) (2006) Laser ablation and its applications, 1st edn. Springer, New York

    Google Scholar 

  29. Bäuerle D (2011) Laser processing and chemistry, 4th edn. Springer, New York

    Book  Google Scholar 

  30. Braslavsky SE, Heibel GH (1992) Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem Rev 92:1381–1410, and references therein

    Article  CAS  Google Scholar 

  31. Landau LD, Lifschitz EM (1959) Fluid mechanics. Pergamon, Oxford, Chap VIII

    Google Scholar 

  32. Van Haver P, Viaene L, Van der Auweraer M, De Schryver FC (1992) References for laser-induced opto-acoustic spectroscopy using UV excitation. J Photochem Photobiol A Chem 63:265–277

    Article  Google Scholar 

  33. Murgida DH, Erra-Balsells R, Bilmes GM (1996) New photocalorimetric references for UV excitation. Chem Phys Lett 250:198–202

    Article  CAS  Google Scholar 

  34. Mesaros M, Tarzi OI, Erra-Balsells R, Bilmes GM (2006) The photophysics of some UV-MALDI matrices studied by using spectroscopic, photoacoustic and luminescence techniques. Chem Phys Lett 426:334–340

    Article  CAS  Google Scholar 

  35. Petroselli G, Gara PD, Bilmes GM, Erra-Balsells R (2012) Photoacoustic and luminescence characterization of nitrogen heterocyclic aromatic UV-MALDI matrices in solution. Photochem Photobiol Sci 11:1062–1068

    Article  CAS  Google Scholar 

  36. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  CAS  Google Scholar 

  37. Vèkey K, Telekes A, Vertes A (eds) (2008) Medical applications of mass spectrometry. Elsevier, Amsterdam

    Google Scholar 

  38. Colombini MP, Modugno F (eds) (1988) Organic mass spectrometry in art and archaeology. Wiley, Florencia

    Google Scholar 

  39. Georgiou S, Hillenkamp F (eds) (2003) Introduction: laser ablation of molecular substrates. Chem Rev 103:317–319

    Google Scholar 

  40. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103:395–425

    Article  CAS  Google Scholar 

  41. Georgiou S, Koubenakis A (2003) Laser-induced material ejection from model molecular solids and liquids: mechanisms, implications, and applications. Chem Rev 103:349–393

    Article  CAS  Google Scholar 

  42. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulation of laser ablation of molecular substrates. Chem Rev 103:321–347

    Article  CAS  Google Scholar 

  43. Paltauf G, Dyer PE (2003) Photomechanical processes and effects in ablation. Chem Rev 103:487–518

    Article  CAS  Google Scholar 

  44. Royer D, Dieulesaint E (2000) Elastic waves in solids I, II. Springer, Berlin

    Book  Google Scholar 

  45. Itzkan I, Albagli D, Dark M, Perelman L, von Rosenberg C, Feld MS (1995) The thermoelastic basis of short pulsed laser ablation of biological tissue. Proc Natl Acad Sci U S A 92:1960–1964

    Article  CAS  Google Scholar 

  46. Albagli D, Dark M, von Rosenberg C, Perelman L, Itzkan I, Feld M (1994) Laser‐induced thermoelastic deformation: a three‐dimensional solution and its application to the ablation of biological tissue. Med Phys 21:1323–1332

    Article  CAS  Google Scholar 

  47. Albagli D, Dark M, Perelman LT, von Rosenberg C, Itzkan I, Feld MS (1994) Photomechanical basis of laser ablation of biological tissue. Opt Lett 19:1684–1686

    Article  CAS  Google Scholar 

  48. Koulikov SG, Dlott DD (2001) Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation. J Photochem Photobiol A Chem 145:183–194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Erra-Balsells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erra-Balsells, R. (2013). MALDI: A Very Useful UV Light-Induced Process…That Still Remains Quite Obscure. In: Hiraoka, K. (eds) Fundamentals of Mass Spectrometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7233-9_9

Download citation

Publish with us

Policies and ethics