Skip to main content

Advances in Systems for Embryo Culture

  • Chapter
  • First Online:
Book cover Biennial Review of Infertility

Abstract

In the recent years, many researches pointed to improve embryo culture conditions and to introduce novel devices and platforms to provide a more appropriate microenvironment for the embryos. The majority of acquired knowledge has led to enrich media formulation, refining them by introducing salts, amino acids, energy substrates, growth factors, and other supplements. However, potential physical requirements (mechanical and surface interactions, cell movement) should be also considered in order to improve in vitro conditions. Recently, novel culture and surface platforms have been developed, allowing dynamic culture through the employment of media flows. Despite the benefits of the employment of innovative and sophisticated platforms have been extensively demonstrated, the widespread distribution of these technologies will not be so immediate because of the costs of these devices and design pitfalls that can make them more labor intensive to utilize. In a futuristic view, a complex automated system may be established to perform all steps that lead to embryo production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behr B. Blastocyst culture and transfer. Hum Reprod. 1999;14(1):5–6.

    Article  PubMed  CAS  Google Scholar 

  2. Jun SH, Choi B, Shahine L, et al. Defining human embryo phenotypes by cohort-specific prognostic factors. PLoS One. 2008;3(7):e2562.

    Article  PubMed  Google Scholar 

  3. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.

    Article  PubMed  CAS  Google Scholar 

  4. Schultz RM. From egg to embryo: a peripatetic journey. Reproduction. 2005;130(6):825–8.

    Article  PubMed  CAS  Google Scholar 

  5. Gopichandran N, Leese HJ. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction. 2006;131(2):269–77.

    Article  PubMed  CAS  Google Scholar 

  6. Lonergan P, Fair T, Corcoran D, et al. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65(1):137–52.

    Article  PubMed  CAS  Google Scholar 

  7. Vajta G, Rienzi L, Cobo A, et al. Embryo culture: can we perform better than nature? Reprod Biomed Online. 2010;20(4):453–69.

    Article  PubMed  Google Scholar 

  8. Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17(4):541–57.

    Article  PubMed  CAS  Google Scholar 

  9. Rienzi L, Vajta G, Ubaldi F. New culture devices in ART. Placenta. 2011;32 Suppl 3:S248–51.

    Article  PubMed  Google Scholar 

  10. Maggiuli R, Ubaldi F, Rienzi L. Oocyte insemination and culture. In: Ginsburg ES, Racowsky C, editors. In vitro fertilization: a comprehensive guide. New York: Springer; 2012. p. 83–98.

    Chapter  Google Scholar 

  11. Richter KS. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr Opin Obstet Gynecol. 2008;20(3):292–304.

    Article  PubMed  Google Scholar 

  12. Thouas GA, Jones GM, Trounson AO. The ‘GO’ system–a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage. Reproduction. 2003;126(2):161–9.

    Article  PubMed  CAS  Google Scholar 

  13. Lane M, Gardner DK. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum Reprod. 1992;7(4):558–62.

    PubMed  CAS  Google Scholar 

  14. Vajta G, Peura TT, Holm P, et al. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev. 2000;55(3):256–64.

    Article  PubMed  CAS  Google Scholar 

  15. Ebner T, Shebl O, Moser M, et al. Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth. Reprod Biomed Online. 2010;21(6):762–8.

    Article  PubMed  CAS  Google Scholar 

  16. Rebollar-Lazaro I, Matson P. The culture of human cleavage stage embryos alone or in groups: effect upon blastocyst utilization rates and implantation. Reprod Biol. 2010;10(3):227–34.

    Article  PubMed  Google Scholar 

  17. Wang W, Liu X, Gelinas D, et al. A fully automated robotic system for microinjection of zebrafish embryos. PLoS One. 2007;2(9):e862.

    Article  PubMed  Google Scholar 

  18. Machtinger R, Racowsky C. Morphological systems of human embryo assessment and clinical evidence. Reprod Biomed Online. 2013 26(3):210–21.

    Google Scholar 

  19. Melin J, Lee A, Foygel K, et al. In vitro embryo culture in defined, sub-microliter volumes. Dev Dyn. 2009;238(4):950–5.

    Article  PubMed  Google Scholar 

  20. Vajta G, Korosi T, Du Y, et al. The Well-of-the-Well system: an efficient approach to improve embryo development. Reprod Biomed Online. 2008;17(1):73–81.

    Article  PubMed  Google Scholar 

  21. Vajta G, Lewis IM, Hyttel P, et al. Somatic cell cloning without micromanipulators. Cloning. 2001;3(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  22. Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip. 2006;6(12):1484–6.

    Article  PubMed  CAS  Google Scholar 

  23. Heo YS, Cabrera LM, Song JW, et al. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal Chem. 2007;79(3):1126–34.

    Article  PubMed  CAS  Google Scholar 

  24. Hunter RH. Modulation of gamete and embryonic microenvironments by oviduct glycoproteins. Mol Reprod Dev. 1994;39(2):176–81.

    Article  PubMed  CAS  Google Scholar 

  25. Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61(4):714–9.

    PubMed  CAS  Google Scholar 

  26. Pool TB. Recent advances in the production of viable human embryos in vitro. Reprod Biomed Online. 2002;4(3):294–302.

    Article  PubMed  Google Scholar 

  27. Turpeenniemi-Hujanen T, Feinberg RF, Kauppila A, et al. Extracellular matrix interactions in early human embryos: implications for normal implantation events. Fertil Steril. 1995;64(1):132–8.

    PubMed  CAS  Google Scholar 

  28. Jang G, Lee BC, Kang SK, et al. Effect of glycosaminoglycans on the preimplantation development of embryos derived from in vitro fertilization and somatic cell nuclear transfer. Reprod Fertil Dev. 2003;15(3):179–85.

    Article  PubMed  CAS  Google Scholar 

  29. Carnegie J, Claman P, Lawrence C, et al. Can Matrigel substitute for Vero cells in promoting the in-vitro development of mouse embryos? Hum Reprod. 1995;10(3):636–41.

    PubMed  CAS  Google Scholar 

  30. Dawson KM, Baltz JM, Claman P. Culture with Matrigel inhibits development of mouse zygotes. J Assist Reprod Genet. 1997;14(9):543–8.

    Article  PubMed  CAS  Google Scholar 

  31. Oakes M, Cabrera L, Nanadivada H, et al., editors. Effect of 3-dimensional topography, dynamic fluid movement and an insoluble glycoprotein matrix on murine embryo development. SGI annual meeting, Glasgow, Scotland, 2009.

    Google Scholar 

  32. Cole RJ, Edwards RG, Paul J. Cytodifferentiation in cell colonies and cell strains derived from cleaving ova and blastocysts of the rabbit. Exp Cell Res. 1965;37:501–4.

    Article  PubMed  CAS  Google Scholar 

  33. Wiemer KE, Cohen J, Amborski GF, et al. In-vitro development and implantation of human embryos following culture on fetal bovine uterine fibroblast cells. Hum Reprod. 1989;4(5):595–600.

    PubMed  CAS  Google Scholar 

  34. Barmat LI, Worrilow KC, Paynton BV. Growth factor expression by human oviduct and buffalo rat liver coculture cells. Fertil Steril. 1997;67(4):775–9.

    Article  PubMed  CAS  Google Scholar 

  35. Pampfer S, Arceci RJ, Pollard JW. Role of colony stimulating factor-1 (CSF-1) and other lympho-hematopoietic growth factors in mouse pre-implantation development. BioEssays. 1991;13(10):535–40.

    Article  PubMed  CAS  Google Scholar 

  36. Loutradis D, John D, Kiessling AA. Hypoxanthine causes a 2-cell block in random-bred mouse embryos. Biol Reprod. 1987;37(2):311–6.

    Article  PubMed  CAS  Google Scholar 

  37. Fukui Y, McGowan LT, James RW, et al. Factors affecting the in-vitro development to blastocysts of bovine oocytes matured and fertilized in vitro. J Reprod Fertil. 1991;92(1):125–31.

    Article  PubMed  CAS  Google Scholar 

  38. Kattal N, Cohen J, Barmat LI. Role of coculture in human in vitro fertilization: a meta-analysis. Fertil Steril. 2008;90(4):1069–76.

    Article  PubMed  Google Scholar 

  39. Isachenko E, Maettner R, Isachenko V, et al. Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab. 2010;56(11–12):569–76.

    PubMed  Google Scholar 

  40. Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? BioEssays. 1994;16(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  41. Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48(2):377–85.

    Article  PubMed  CAS  Google Scholar 

  42. Trimarchi JR, Liu L, Smith PJ, et al. Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos. Biol Reprod. 2000;63(3):851–7.

    Article  PubMed  CAS  Google Scholar 

  43. Xie Y, Wang F, Zhong W, et al. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod. 2006;75(1):45–55.

    Article  PubMed  CAS  Google Scholar 

  44. Xie Y, Wang F, Puscheck EE, et al. Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev. 2007;74(10):1287–94.

    Article  PubMed  CAS  Google Scholar 

  45. Fukui Y, Lee ES, Araki N. Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J Anim Sci. 1996;74(11):2752–8.

    PubMed  CAS  Google Scholar 

  46. Hoppe PC, Pitts S. Fertilization in vitro and development of mouse ova. Biol Reprod. 1973;8(4):420–6.

    PubMed  CAS  Google Scholar 

  47. Isachenko V, Montag M, Isachenko E, et al. Effective method for in-vitro culture of cryopreserved human ovarian tissue. Reprod Biomed Online. 2006;13(2):228–34.

    Article  PubMed  Google Scholar 

  48. Matsuura K, Hayashi N, Kuroda Y, et al. Improved development of mouse and human embryos using a tilting embryo culture system. Reprod Biomed Online. 2010;20(3):358–64.

    Article  PubMed  Google Scholar 

  49. Mizobe Y, Yoshida M, Miyoshi K. Enhancement of cytoplasmic maturation of in vitro-matured pig oocytes by mechanical vibration. J Reprod Dev. 2010;56(2):285–90.

    Article  PubMed  Google Scholar 

  50. Isachenko V, Maettner R, Sterzik K, et al. In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod Biomed Online. 2011;22(6):536–44.

    Article  PubMed  Google Scholar 

  51. Ali J. Continuous ultra-microdrop culture yields higher pregnancy and implantation rates than either large-drop culture or fresh-medium replacement. J Clin Embryol. 2004;7:1–23.

    Google Scholar 

  52. Walters EM, Beebe DJ, Wheeler MB. In vitro maturation of pig oocytes in PDMS and silicon microfludic devices. Theriogenology. 2001;55(1):497.

    Google Scholar 

  53. Hester PN, Roseman HM, Clark SG, et al. Enhanced cleavage rates following in vitro maturation of pig oocytes within polydimethylsiloxane-borosilcate microchannels. Theriogenology. 2002;57(1):723.

    Google Scholar 

  54. Cho BS, Schuster TG, Zhu X, et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5.

    Article  PubMed  CAS  Google Scholar 

  55. Shibata D, Ando H, Lwase A, et al. Analysis of sperm motility and fertilization rates after the separation by microfluidic sperm sorter made of quartz. Fertil Steril. 2007;88(Supp 1):S110.

    Article  Google Scholar 

  56. Raty S, Walters EM, Davis J, et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip. 2004;4(3):186–90.

    Article  PubMed  CAS  Google Scholar 

  57. Nakamura H, Mizuno J, Akaishi K, et al., editors. New embryo co-culture system for human assisted reproductive technology (ART) by OptiCell. 23rd Annual meeting of the ESHRE, Lyon, France, 2007.

    Google Scholar 

  58. Schuster TG, Cho B, Keller LM, et al. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75–81.

    Article  PubMed  Google Scholar 

  59. Clark SG, Haubert K, Beebe DJ, et al. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5(11):1229–32.

    Article  PubMed  CAS  Google Scholar 

  60. Hickman DL, Beebe DJ, Rodriguez-Zas SL, et al. Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med. 2002;52(2):122–6.

    PubMed  CAS  Google Scholar 

  61. Swain J, Pool TB, Takayama S, et al. Microfluidics in ART: time to go with the flow? J Clin Emrbyol. 2008;11(2):5–18.

    Google Scholar 

  62. Glasgow IK, Zeringue HC, Beebe DJ, et al. Handling individual mammalian embryos using microfluidics. IEEE Trans Biomed Eng. 2001;48(5):570–8.

    Article  PubMed  CAS  Google Scholar 

  63. Heo YS, Cabrera LM, Bormann CL, et al. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25(3):613–22.

    Article  PubMed  CAS  Google Scholar 

  64. Meseguer M, Herrero J, Tejera A, et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.

    Article  PubMed  Google Scholar 

  65. Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod. 2012;27(5):1277–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rienzi M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maggiulli, R., Dovere, L., Ubaldi, F., Rienzi, L. (2013). Advances in Systems for Embryo Culture. In: Schlegel, P., Fauser, B., Carrell, D., Racowsky, C. (eds) Biennial Review of Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7187-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7187-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7186-8

  • Online ISBN: 978-1-4614-7187-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics