Reproductive Surgery and Computer-Assisted Laparoscopy: The New Age of Subspecialty Surgery Is Here

Chapter

Abstract

Reproductive endocrinology and infertility subspecialists enjoy a unique perspective of their patients’ reproductive endeavor as well as a deep understanding of the medical, technological, and surgical armamentarium to overcome infertility. As such, it is their privilege and their ethical duty to take full charge of the field of reproductive surgery. Advanced laparoscopic surgery is an indispensable tool for all specialists caring for women seeking fertility preservation, but the individual surgical aptitude and extensive training it requires are formidable hurdles to its adoption within our subspecialty. We illustrate the transforming capabilities of computer-assisted laparoscopy in reproductive surgery and highlight the current and future potential of this robotic technology in fertility preservation. Although this is a technical review mostly intended for a surgical audience, its broader goal is to sensitize all reproductive specialists to the rebirth of high-specialty reproductive surgery.

Keywords

Cellulose Catheter Lymphoma Foam Sarcoma 

References

  1. 1.
    Azziz R. Role of reproductive surgeons and the society of reproductive surgeons. Fertil Steril. 2002;78(5):916–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Adamson GD. The modern role of reproductive surgery. Clin Obstet Gynecol. 2011;54(4):710–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Practice Committee of American Society for Reproductive Medicine in collaboration with Society of Reproductive Surgeons et al. Pathogenesis, consequences, and control of peritoneal adhesions in gynecologic surgery. Fertil Steril. 2008;90(5 Suppl):S144–9.Google Scholar
  4. 4.
    Gutt CN, Oniu T, Schemmer P, et al. Fewer adhesions induced by laparoscopic surgery? Surg Endosc. 2004;18(6):898–906.PubMedCrossRefGoogle Scholar
  5. 5.
    Rodgers AK, Goldberg JM, Goldberg JM, Hammel JP, Falcone T, et al. Tubal anastomosis by robotic compared with outpatient minilaparotomy. Obstet Gynecol. 2007;109(6):1375–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Chandra V, Nehra D, Parent R, et al. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery. 2010;147(6):830–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Passerotti CC, Passerotti AM, Dall’Oglio MF, Leite KR, et al. Comparing the quality of the suture anastomosis and the learning curves associated with performing open, freehand, and robotic-assisted laparoscopic pyeloplasty in a swine animal model. J Am Coll Surg. 2009;208:576–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Stefanidis D, Wang F, Korndorffer Jr JR, et al. Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload. Surg Endosc. 2010;24(2):377–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Yohannes P, Rotariu P, Pinto P, et al. Comparison of robotic versus laparoscopic skills: is there a difference in the learning curve? Urology. 2002;60(1):39–45; discussionGoogle Scholar
  10. 10.
    Lenihan Jr JP, Kovanda C, Seshadri-Kreaden U. What is the learning curve for robotic assisted gynecologic surgery? J Minim Invasive Gynecol. 2008;15(5):589–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Payne TN, Dauterive FR. A comparison of total laparoscopic hysterectomy to robotically assisted hysterectomy: surgical outcomes in a community practice. J Minim Invasive Gynecol. 2008;15(3):286–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Seamon LG, Fowler JM, Richardson DL, et al. A detailed analysis of the learning curve: robotic hysterectomy and pelvic-aortic lymphadenectomy for endometrial cancer. Gynecol Oncol. 2009;114(2):162–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Gargiulo AR, Srouji SS, Missmer SA, et al. Robot-assisted laparoscopic myomectomy compared with standard laparoscopic myomectomy. Obstet Gynecol. 2012;120(2 Pt 1):284–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Park A, Lee G, Seagull FJ, et al. Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg. 2010;210(3):306–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee G, Lee T, Dexter D, et al. Ergonomic risk associated with assisting in minimally invasive surgery. Surg Endosc. 2009;23(1):182–8.PubMedCrossRefGoogle Scholar
  16. 16.
    van Det MJ, Meijerink WJ, Hoff C, et al. Optimal ergonomics for laparoscopic surgery in minimally invasive surgery suites: a review and guidelines. Surg Endosc. 2009;23(6):1279–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Sutton E, Youssef Y, Meenaghan N, et al. Gaze disruptions experienced by the laparoscopic operating surgeon. Surg Endosc. 2010;24(6):1240–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiegmann DA, ElBardissi AW, Dearani JA, et al. Disruptions in surgical flow and their relationship to surgical errors: an exploratory investigation. Surgery. 2007;142(5):658–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Lallas CD, Davis and Members of the Society of Urologic Robotic Surgeons JW. Robotic surgery training with commercially available simulation systems in 2011: a current review and practice pattern survey from the society of urologic robotic surgeons. J Endourol. 2012;26(3):283–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Abboudi H, Khan MS, Aboumarzouk O, et al. Current status of validation for robotic surgery simulators – a systematic review. BJU Int. 2013;111(2):194–205.PubMedCrossRefGoogle Scholar
  21. 21.
    Sunkara SK, Khairy M, El-Toukhy T, et al. The effect of intramural fibroids without uterine cavity involvement on the outcome of IVF treatment: a systematic review and meta-analysis. Hum Reprod. 2010;25(2):418–29.PubMedCrossRefGoogle Scholar
  22. 22.
    Klatsky PC, Tran ND, Caughey AB, et al. Fibroids and reproductive outcomes: a systematic literature review from conception to delivery. Am J Obstet Gynecol. 2008;198(4):357–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Shavell VI, Thakur M, Sawant A, et al. Adverse obstetric outcomes associated with sonographically identified large uterine fibroids. Fertil Steril. 2012;97(1):107–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Jin C, Hu Y, Chen XC, et al. Laparoscopic versus open myomectomy–a meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol. 2009;145(1):14–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Bulletti C, Polli V, Negrini V, et al. Adhesion formation after laparoscopic myomectomy. J Am Assoc Gynecol Laparosc. 1996;3(4):533–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Palomba S, Zupi E, Russo T, et al. A multicenter randomized, controlled study comparing laparoscopic versus minilaparotomic myomectomy: short-term outcomes. Fertil Steril. 2007;88(4):942–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Takeuchi H, Kinoshita K. Evaluation of adhesion formation after laparoscopic myomectomy by systematic second-look microlaparoscopy. J Am Assoc Gynecol Laparosc. 2002;9(4):442–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Garnet JD. Uterine rupture during pregnancy. An analysis of 133 patients. Obstet Gynecol. 1964;23:898–905.PubMedGoogle Scholar
  29. 29.
    Parker WH, Einarsson J, Istre O, et al. Risk factors for uterine rupture after laparoscopic myomectomy. J Minim Invasive Gynecol. 2010;17(5):551–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Spong CY, Landon MB, Gilbert S, et al. Risk of uterine rupture and adverse perinatal outcome at term after cesarean delivery. Obstet Gynecol. 2007;110(4):801–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Pitter MC, Gargiulo AR, Bonaventura LM, et al. Pregnancy outcomes following robot-assisted myomectomy. Hum Reprod. 2013;28(1):99–108.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu G, Zolis L, Kung R, et al. The laparoscopic myomectomy: a survey of Canadian gynaecologists. J Obstet Gynaecol Can. 2010;32(2):139–48.PubMedGoogle Scholar
  33. 33.
    Advincula AP, Song A, Burke W, et al. Preliminary experience with robot-assisted laparoscopic myomectomy. J Am Assoc Gynecol Laparosc. 2004;11(4):511–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Bedient CE, Magrina JF, Noble BN, et al. Comparison of robotic and laparoscopic myomectomy. Am J Obstet Gynecol. 2009;201(6):566.e1–5.Google Scholar
  35. 35.
    Advincula AP, Xu X, Goudeau S, et al. Robot-assisted laparoscopic myomectomy versus abdominal myomectomy: a comparison of short-term surgical outcomes and immediate costs. J Minim Invasive Gynecol. 2007;14(6):698–705.PubMedCrossRefGoogle Scholar
  36. 36.
    Mais V, Ajossa S, Guerriero S, et al. Laparoscopic versus abdominal myomectomy: a prospective, randomized trial to evaluate benefits in early outcome. Am J Obstet Gynecol. 1996;174(2):654–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Barakat EE, Bedaiwy MA, Zimberg S, et al. Robotic-assisted, laparoscopic, and abdominal myomectomy: a comparison of surgical outcomes. Obstet Gynecol. 2011;117(2 Pt 1):256–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Meredith SM, Sanchez-Ramos L, Kaunitz AM. Diagnostic accuracy of transvaginal sonography for the diagnosis of adenomyosis: systematic review and metaanalysis. Am J Obstet Gynecol. 2009;201(1):107.e1–6.Google Scholar
  39. 39.
    Moghadam R, Lathi RB, Shahmohamady B, et al. Predictive value of magnetic resonance imaging in differentiating between leiomyoma and adenomyosis. JSLS. 2006;10(2):216–9.PubMedGoogle Scholar
  40. 40.
    Goto A, Takeuchi S, Sugimura K, et al. Usefulness of Gd-DTPA contrast-enhanced dynamic MRI and serum determination of LDH and its isozymes in the differential diagnosis of leiomyosarcoma from degenerated leiomyoma of the uterus. Int J Gynecol Cancer. 2002;12(4):354–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Bush AJ, Morris SN, Millham FH, et al. Women’s preferences for minimally invasive incisions. J Minim Invasive Gynecol. 2011;18(5):640–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Gargiulo AR, Bailey AP, Srouji SS. Robot-assisted single-incision laparoscopic myomectomy: initial report and technique. J Robot Surg. 2012. doi:  10.1007/s11701-012-0356-1.
  43. 43.
    Hillis SD, Marchbanks PA, Tylor LR, et al. Poststerilization regret: findings from the United States collaborative review of sterilization. Obstet Gynecol. 1999;93(6):889–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Roberts DL, Solow AR. Flightless birds: when did the dodo become extinct? Nature. 2003;426(6964):245.PubMedCrossRefGoogle Scholar
  45. 45.
    Deffieux X, Morin Surroca M, Faivre E, et al. Tubal anastomosis after tubal sterilization: a review. Arch Gynecol Obstet. 2011;283(5):1149–58.PubMedCrossRefGoogle Scholar
  46. 46.
    Yoon TK, Sung HR, Kang HG, et al. Laparoscopic tubal anastomosis: fertility outcome in 202 cases. Fertil Steril. 1999;72(6):1121–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Falcone T, Goldberg J, Garcia-Ruiz A, et al. Full robotic assistance for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech A. 1999;9(1):107–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Dharia Patel SP, Steinkampf MP, Whitten SJ, Whitten SJ, Malizia BA, et al. Robotic tubal anastomosis: ­surgical technique and cost effectiveness. Fertil Steril. 2008;90(4):1175–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Caillet M, Vandromme J, Rozenberg S, Paesmans M, et al. Robotically assisted laparoscopic microsurgical tubal reanastomosis: a retrospective study. Fertil Steril. 2010;94(5):1844–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Degueldre M, Vandromme J, Huong PT, et al. Robotically assisted laparoscopic microsurgical tubal reanastomosis: a feasibility study. Fertil Steril. 2000;74(5):1020–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Gargiulo AR. Fertility preservation and the role of robotics. Clin Obstet Gynecol. 2011;54(3):431–48.PubMedCrossRefGoogle Scholar
  52. 52.
    Practice Committee of the American Society for Reproductive Medicine. Committee opinion: role of tubal surgery in the era of assisted reproductive technology. Fertil Steril. 2012;97(3):539–45.Google Scholar
  53. 53.
    Jacobson TZ, Duffy JM, Barlow D, et al. Laparoscopic surgery for subfertility associated with endometriosis. Cochrane Database Syst Rev. 2010;1:CD001398.PubMedGoogle Scholar
  54. 54.
    Marcoux S, Maheux R, Berube S. Laparoscopic surgery in infertile women with minimal or mild endometriosis. Canadian collaborative group on endometriosis. N Engl J Med. 1997;337(4):217–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Parazzini F. Ablation of lesions or no treatment in minimal-mild endometriosis in infertile women: a randomized trial. Gruppo Italiano per lo Studio dell’Endometriosi. Hum Reprod. 1999;14(5):1332–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Practice Committee of the American Society for Reproductive Medicine. Endometriosis and infertility: a committee opinion. Fertil Steril. 2012;98(3):591–8.Google Scholar
  57. 57.
    Celik HG, Dogan E, Okyay E, et al. Effect of laparoscopic excision of endometriomas on ovarian reserve: serial changes in the serum antimullerian hormone levels. Fertil Steril. 2012;97(6):1472–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Coccia ME, Rizzello F, Mariani G, et al. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum Reprod. 2011;26(11):3000–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Crosignani PG, Vercellini P, Biffignandi F, et al. Laparoscopy versus laparotomy in conservative surgical treatment for severe endometriosis. Fertil Steril. 1996;66(5):706–11.PubMedGoogle Scholar
  60. 60.
    Kuroda M, Kuroda K, Arakawa A, et al. Histological assessment of impact of ovarian endometrioma and laparoscopic cystectomy on ovarian reserve. J Obstet Gynaecol Res. 2012;38(9):1187–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Li CZ, Liu B, Wen ZQ, et al. The impact of electrocoagulation on ovarian reserve after laparoscopic excision of ovarian cysts: a prospective clinical study of 191 patients. Fertil Steril. 2009;92(4):1428–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Barton SE, Gargiulo AR. Robot-assisted laparoscopic myomectomy and adenomyomectomy with a flexible CO2 laser device. J Robot Surg. 2012. doi:  10.1007/s11701-012-0360-5.
  63. 63.
    Donnez J, Lousse JC, Jadoul P, et al. Laparoscopic management of endometriomas using a combined technique of excisional (cystectomy) and ablative surgery. Fertil Steril. 2010;94(1):28–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Muzii L, Panici PB. Combined technique of excision and ablation for the surgical treatment of ovarian endometriomas: the way forward? Reprod Biomed Online. 2010;20(2):300–2.PubMedCrossRefGoogle Scholar
  65. 65.
    Muzii L, Bellati F, Bianchi A, et al. Laparoscopic stripping of endometriomas: a randomized trial on different surgical techniques. Part II: Pathological results. Hum Reprod. 2005;20(7):1987–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Muzii L, Bianchi A, Bellati F, et al. Histologic analysis of endometriomas: what the surgeon needs to know. Fertil Steril. 2007;87(2):362–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Muzii L, Miller CE. The singer, not the song. J Minim Invasive Gynecol. 2011;18(5):666–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Carvalho L, Abrao MS, Deshpande A, Falcone T, et al. Robotics as a new surgical minimally invasive approach to treatment of endometriosis: a systematic review. Int J Med Robot. 2012;8(2):160–5. doi: 10.1002/rcs.451.PubMedCrossRefGoogle Scholar
  69. 69.
    Nezhat C, Hajhosseini B, King LP. Robotic-assisted laparoscopic treatment of bowel, bladder, and ureteral endometriosis. JSLS. 2011;15(3):387–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Nezhat C, Lewis M, Kotikela S, Veeraswamy A, et al. Robotic versus standard laparoscopy for the treatment of endometriosis. Fertil Steril. 2010;94(7):2758–60.PubMedCrossRefGoogle Scholar
  71. 71.
    Bisharah M, Tulandi T. Laparoscopic preservation of ovarian function: an underused procedure. Am J Obstet Gynecol. 2003;188(2):367–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Morice P, Thiam-Ba R, Castaigne D, et al. Fertility results after ovarian transposition for pelvic malignancies treated by external irradiation or brachytherapy. Hum Reprod. 1998;13(3):660–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Terenziani M, Piva L, Meazza C, et al. Oophoropexy: a relevant role in preservation of ovarian function after pelvic irradiation. Fertil Steril. 2009;91(3):31.CrossRefGoogle Scholar
  74. 74.
    Hwang JH, Yoo HJ, Park SH, et al. Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy. Fertil Steril. 2012;97(6):1387–93.e1–2.Google Scholar
  75. 75.
    Barton SE, Politch JA, Benson CB, et al. Transabdominal follicular aspiration for oocyte retrieval in patients with ovaries inaccessible by transvaginal ultrasound. Fertil Steril. 2011;95(5):1773–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Molpus KL, Wedergren JS, Carlson MA. Robotically assisted endoscopic ovarian transposition. JSLS. 2003;7(1):59–62.PubMedGoogle Scholar
  77. 77.
    Al-Badawi I, Al-Aker M, Tulandi T. Robotic-assisted ovarian transposition before radiation. Surg Technol Int. 2010;19:141–3.PubMedGoogle Scholar
  78. 78.
    Grynberg M, Poulain M, Sebag-Peyrelevade S, le Parco S, et al. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil Steril. 2012;97(6):1260–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Oktay K, Oktem O. Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience. Fertil Steril. 2010;93(3):762–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Mayerhofer K, Ott J, Nouri K, et al. Laparoscopic ovarian tissue harvesting for cryopreservation: an effective and safe procedure for fertility preservation. Eur J Obstet Gynecol Reprod Biol. 2010;152(1):68–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Donnez J, Jadoul P, Pirard C, et al. Live birth after transplantation of frozen-thawed ovarian tissue after bilateral oophorectomy for benign disease. Fertil Steril. 2012;98(3):720–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Sonmezer M, Oktay K. Orthotopic and heterotopic ovarian tissue transplantation. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):113–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Akar ME, Carrillo AJ, Jennell JL, Yalcinkaya TM, et al. Robotic-assisted laparoscopic ovarian tissue transplantation. Fertil Steril. 2011;95(3):1120.e5–8Google Scholar
  84. 84.
    Bedaiwy MA, Falcone T. Whole ovary transplantation. Clin Obstet Gynecol. 2010;53(4):797–803.PubMedCrossRefGoogle Scholar
  85. 85.
    Silber SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod. 2012;18(2):59–67.PubMedCrossRefGoogle Scholar
  86. 86.
    Silber SJ, DeRosa M, Pineda J, et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod. 2008;23(7):1531–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Silber SJ, Grudzinskas G, Gosden RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med. 2008;359(24):2617–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Boggi U, Vistoli F, Signori S, et al. Robotic renal transplantation: first European case. Transpl Int. 2011;24(2):213–8. doi: 10.1111/j.1432-2277.2010.01191.x.PubMedCrossRefGoogle Scholar
  89. 89.
    Falk V, Jacobs S, Gummert JF, et al. Computer-enhanced endoscopic coronary artery bypass grafting: the da Vinci experience. Semin Thorac Cardiovasc Surg. 2003;15(2):104–11.PubMedCrossRefGoogle Scholar
  90. 90.
    Semm K, Mettler L. Technical progress in pelvic surgery via operative laparoscopy. Am J Obstet Gynecol. 1980;138(2):121–7.PubMedGoogle Scholar
  91. 91.
    AAGL Advancing Minimally Invasive Gynecology Worldwide. AAGL position statement: robotic-assisted laparoscopic surgery in benign gynecology. J Minim Invasive Gynecol. 2013;20(1):2–9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Obstetrics, Gynecology and Reproductive BiologyHarvard Medical SchoolBostonUSA
  2. 2.Center for Robotic Surgery, Brigham and Women’s Health Care, Center for Infertility and Reproductive SurgeryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations