Skip to main content

The Aging Male and Impact on Offspring

  • Chapter
  • First Online:
Biennial Review of Infertility

Abstract

Advancing age is known to severely affect female fertility with correlations to increased spontaneous abortions, chromosomal defects in offspring, preterm delivery, and intrauterine growth restriction. In contrast, the effect of advanced paternal age has received far less attention. This is likely a result of the absence of such striking effects compared with those associated with maternal aging. Nevertheless, recent data suggesting an association between advanced paternal age and neuropsychiatric disorders in offspring have increased the attention given to the effects of paternal age on sperm quality and to offspring health and disease susceptibility. We have learned from many recent studies that paternal aging does significantly affect fecundity in males through declines in semen parameters and increases in genetic and epigenetic abnormalities. The identification of these risks and their coverage in popular media require that physicians are well versed in the data and are able to communicate the relative risks of paternal aging on offspring health in addition to interpreting the absolute risk of these abnormalities to concerned patients. This chapter will review the current literature regarding male age-associated changes to semen parameters and the effects of advanced paternal age on offspring disease risk. We will also attempt to put these risks into clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mills M, Rindfuss RR, McDonald P, et al. Why do people postpone parenthood? Reasons and social policy incentives. Hum Reprod Update. 2011;17(6):848–60.

    PubMed  Google Scholar 

  2. Kuhnert B, Nieschlag E. Reproductive functions of the ageing male. Hum Reprod Update. 2004;10(4):327–39.

    PubMed  Google Scholar 

  3. Bray I, Gunnell D, Davey SG. Advanced paternal age: how old is too old? J Epidemiol Community Health. 2006;60(10):851–3.

    PubMed  Google Scholar 

  4. Australian Bureau of Statistics: Births, Australia, 2011. 2012 [updated October 25, 2012; cited 2013 March 28]; Available from: http://www.abs.gov.au/ausstats/abs@.nsf/mf/3301.0.

  5. Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75(2):237–48.

    PubMed  CAS  Google Scholar 

  6. Eskenazi B, Wyrobek AJ, Sloter E, et al. The association of age and semen quality in healthy men. Hum Reprod. 2003;18(2):447–54.

    PubMed  CAS  Google Scholar 

  7. Sartorius GA, Nieschlag E. Paternal age and reproduction. Hum Reprod Update. 2010;16(1):65–79.

    PubMed  Google Scholar 

  8. Kuhnert B, Nieschlag E. Reproductive functions of the ageing male. Hum Reprod Update. 2004;10(4):327–39.

    PubMed  Google Scholar 

  9. Hellstrom WJ, Overstreet JW, Sikka SC, et al. Semen and sperm reference ranges for men 45 years of age and older. J Androl. 2006;27(3):421–8.

    PubMed  Google Scholar 

  10. Johnson FB, Sinclair DA, Guarente L. Molecular biology of aging. Cell. 1999;96(2):291–302.

    PubMed  CAS  Google Scholar 

  11. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408(6809):255–62.

    PubMed  CAS  Google Scholar 

  12. Humm KC, Sakkas D. Role of increased male age in IVF and egg donation: is sperm DNA fragmentation responsible? Fertil Steril. 2013;99(1):30–6.

    PubMed  CAS  Google Scholar 

  13. Schmid TE, Eskenazi B, Baumgartner A, et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod. 2007;22(1):180–7.

    PubMed  CAS  Google Scholar 

  14. Wyrobek AJ, Eskenazi B, Young S, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA. 2006;103(25):9601–6.

    PubMed  CAS  Google Scholar 

  15. Varshini J, Srinag BS, Kalthur G, et al. Poor sperm quality and advancing age are associated with increased sperm DNA damage in infertile men. Andrologia. 2012;44 Suppl 1:642–9.

    PubMed  Google Scholar 

  16. Moskovtsev SI, Willis J, Mullen JB. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril. 2006;85(2):496–9.

    PubMed  CAS  Google Scholar 

  17. Cocuzza M, Athayde KS, Agarwal A, et al. Age-related increase of reactive oxygen species in neat semen in healthy fertile men. Urology. 2008;71(3):490–4.

    PubMed  Google Scholar 

  18. Colin A, Barroso G, Gomez-Lopez N, et al. The effect of age on the expression of apoptosis biomarkers in human spermatozoa. Fertil Steril. 2010;94(7):2609–14.

    PubMed  CAS  Google Scholar 

  19. Jones KT. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update. 2008;14(2):143–58.

    PubMed  CAS  Google Scholar 

  20. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91.

    PubMed  CAS  Google Scholar 

  21. Handyside AH. Molecular origin of female meiotic aneuploidies. Biochim Biophys Acta. 2012;1822(12):1913–20.

    PubMed  CAS  Google Scholar 

  22. Luetjens CM, Rolf C, Gassner P, et al. Sperm aneuploidy rates in younger and older men. Hum Reprod. 2002;17(7):1826–32.

    PubMed  CAS  Google Scholar 

  23. Bosch M, Rajmil O, Martinez-Pasarell O, et al. Linear increase of diploidy in human sperm with age: a four-colour FISH study. Eur J Hum Genet. 2001;9(7):533–8.

    PubMed  CAS  Google Scholar 

  24. Griffin DK, Abruzzo MA, Millie EA, et al. Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol Genet. 1995;4(12):2227–32.

    PubMed  CAS  Google Scholar 

  25. Lowe X, Eskenazi B, Nelson DO, et al. Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet. 2001;69(5):1046–54.

    PubMed  CAS  Google Scholar 

  26. Conrad DF, Keebler JE, DePristo MA, et al. Variation in genome-wide mutation rates within and between human families. Nat Genet. 2011;43(7):712–4.

    PubMed  CAS  Google Scholar 

  27. Wang J, Fan HC, Behr B, et al. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell. 2012;150(2):402–12.

    PubMed  CAS  Google Scholar 

  28. Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA. 2010;107(3):961–8.

    PubMed  CAS  Google Scholar 

  29. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1(1):40–7.

    PubMed  CAS  Google Scholar 

  30. Penrose LS. Parental age and mutation. Lancet. 1955;269(6885):312–3.

    PubMed  CAS  Google Scholar 

  31. Kong A, Frigge ML, Masson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488(7412):471–5.

    PubMed  CAS  Google Scholar 

  32. Ferreira MG, Miller KM, Cooper JP. Indecent exposure: when telomeres become uncapped. Mol Cell. 2004;13(1):7–18.

    PubMed  CAS  Google Scholar 

  33. Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89(21):10114–8.

    PubMed  CAS  Google Scholar 

  34. Unryn BM, Cook LS, Riabowol KT. Paternal age is positively linked to telomere length of children. Aging Cell. 2005;4(2):97–101.

    PubMed  CAS  Google Scholar 

  35. Njajou OT, Cawthon RM, Damcott CM, et al. Telomere length is paternally inherited and is associated with parental lifespan. Proc Natl Acad Sci USA. 2007;104(29):12135–9.

    PubMed  CAS  Google Scholar 

  36. Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012;730(1–2):68–74.

    PubMed  CAS  Google Scholar 

  37. Smith RG, Kember RL, Mill J, et al. Advancing paternal age is associated with deficits in social and exploratory behaviors in the offspring: a mouse model. PLoS One. 2009;4(12):e8456.

    PubMed  Google Scholar 

  38. Naserbakht M, Ahmadkhaniha HR, Mokri B, et al. Advanced paternal age is a risk factor for schizophrenia in Iranians. Ann Gen Psychiatry. 2011;10:15.

    PubMed  Google Scholar 

  39. Dalman C. Advanced paternal age increases risk of bipolar disorder in offspring. Evid Based Ment Health. 2009;12(2):59.

    PubMed  Google Scholar 

  40. Wiener-Megnazi Z, Auslender R, Dirnfeld M. Advanced paternal age and reproductive outcome. Asian J Androl. 2012;14(1):69–76.

    PubMed  Google Scholar 

  41. Alio AP, Salihu HM, McIntosh C, et al. The effect of paternal age on fetal birth outcomes. Am J Mens Health. 2012;6(5):427–35.

    PubMed  Google Scholar 

  42. Eriksen W, Sundet JM, Tambs K. Paternal age at birth and the risk of obesity in young adulthood: a register-based birth cohort study of norwegian males. Am J Hum Biol. 2013;25(1):29–34.

    PubMed  Google Scholar 

  43. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science. 1983;220(4601):1055–7.

    PubMed  CAS  Google Scholar 

  44. Oakes CC, Smiraglia DJ, Plass C, et al. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA. 2003;100(4):1775–80.

    PubMed  CAS  Google Scholar 

  45. Thompson RF, Atzmon G, Gheorghe C, et al. Tissue-specific dysregulation of DNA methylation in aging. Aging Cell. 2010;9(4):506–18.

    PubMed  CAS  Google Scholar 

  46. Adkins RM, Thomas F, Tylavsky FA, et al. Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet. 2011;12:47.

    PubMed  CAS  Google Scholar 

  47. Tominaga K, Pereira-Smith OM. The role of chromatin reorganization in the process of cellular senescence. Curr Drug Targets. 2012;13(13):1593–602.

    PubMed  CAS  Google Scholar 

  48. Nijs M, De Jonge C, Cox A, et al. Correlation between male age, WHO sperm parameters, DNA fragmentation, chromatin packaging and outcome in assisted reproduction technology. Andrologia. 2011;43(3):174–9.

    PubMed  CAS  Google Scholar 

  49. Hassan MA, Killick SR. Effect of male age on fertility: evidence for the decline in male fertility with increasing age. Fertil Steril. 2003;79 Suppl 3:1520–7.

    PubMed  Google Scholar 

  50. de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17(6):1649–56.

    PubMed  Google Scholar 

  51. Selvin S, Garfinkel J. Paternal age, maternal age and birth order and the risk of a fetal loss. Hum Biol. 1976;48(1):223–30.

    PubMed  CAS  Google Scholar 

  52. Ford WC, North K, Taylor H, et al. Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. The ALSPAC Study Team (Avon Longitudinal Study of Pregnancy and Childhood). Hum Reprod. 2000;15(8):1703–8.

    PubMed  CAS  Google Scholar 

  53. Dunson DB, Colombo B, Baird DD. Changes with age in the level and duration of fertility in the menstrual cycle. Hum Reprod. 2002;17(5):1399–403.

    PubMed  Google Scholar 

  54. Olsen J. Subfecundity according to the age of the mother and the father. Dan Med Bull. 1990;37(3):281–2.

    PubMed  CAS  Google Scholar 

  55. Belloc S, Cohen-Bacrie P, Benkhalifa M, et al. Effect of maternal and paternal age on pregnancy and miscarriage rates after intrauterine insemination. Reprod Biomed Online. 2008;17(3):392–7.

    PubMed  Google Scholar 

  56. Mathieu C, Ecochard R, Bied V, et al. Cumulative conception rate following intrauterine artificial insemination with husband’s spermatozoa: influence of husband’s age. Hum Reprod. 1995;10(5):1090–7.

    PubMed  CAS  Google Scholar 

  57. Bellver J, Garrido N, Remohi J, et al. Influence of paternal age on assisted reproduction outcome. Reprod Biomed Online. 2008;17(5):595–604.

    PubMed  Google Scholar 

  58. Klonoff-Cohen HS, Natarajan L. The effect of advancing paternal age on pregnancy and live birth rates in couples undergoing in vitro fertilization or gamete intrafallopian transfer. Am J Obstet Gynecol. 2004;191(2):507–14.

    PubMed  Google Scholar 

  59. de La Rochebrochard E, de Mouzon J, Thepot F, et al. Fathers over 40 and increased failure to conceive: the lessons of in vitro fertilization in France. Fertil Steril. 2006;85(5):1420–4.

    Google Scholar 

  60. Frattarelli JL, Miller KA, Miller BT, et al. Male age negatively impacts embryo development and reproductive outcome in donor oocyte assisted reproductive technology cycles. Fertil Steril. 2008;90(1):97–103.

    PubMed  Google Scholar 

  61. Whitcomb BW, Turzanski-Fortner R, Richter KS, et al. Contribution of male age to outcomes in assisted reproductive technologies. Fertil Steril. 2011;95(1):147–51.

    PubMed  Google Scholar 

  62. Risch N, Reich EW, Wishnick MM, et al. Spontaneous mutation and parental age in humans. Am J Hum Genet. 1987;41(2):218–48.

    PubMed  CAS  Google Scholar 

  63. Lim J, Maher GJ, Turner GD, et al. Selfish spermatogonial selection: evidence from an immunohistochemical screen in testes of elderly men. PLoS One. 2012;7(8):e42382.

    PubMed  CAS  Google Scholar 

  64. Moloney DM, Slaney SF, Oldridge M, et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet. 1996;13(1):48–53.

    PubMed  CAS  Google Scholar 

  65. Wilkin DJ, Szabo JK, Cameron R, et al. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet. 1998;63(3):711–6.

    PubMed  CAS  Google Scholar 

  66. Sol-Church K, Stabley DL, Nicholson L, et al. Paternal bias in parental origin of HRAS mutations in Costello syndrome. Hum Mutat. 2006;27(8):736–41.

    PubMed  CAS  Google Scholar 

  67. Tartaglia M, Cordeddu V, Chang H, et al. Paternal germline origin and sex-ratio distortion in transmission of PTPN11 mutations in Noonan syndrome. Am J Hum Genet. 2004;75(3):492–7.

    PubMed  CAS  Google Scholar 

  68. Carlson KM, Bracamontes J, Jackson CE, et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am J Hum Genet. 1994;55(6):1076–82.

    PubMed  CAS  Google Scholar 

  69. Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet. 2012;90(2):175–200.

    PubMed  CAS  Google Scholar 

  70. MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

    Google Scholar 

  71. Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4(4):387–92.

    PubMed  CAS  Google Scholar 

  72. Goldberg YP, Kremer B, Andrew SE, et al. Molecular analysis of new mutations for Huntington’s disease: intermediate alleles and sex of origin effects. Nat Genet. 1993;5(2):174–9.

    PubMed  CAS  Google Scholar 

  73. Brunner HG, Bruggenwirth HT, Nillesen W, et al. Influence of sex of the transmitting parent as well as of parental allele size on the CTG expansion in myotonic dystrophy (DM). Am J Hum Genet. 1993;53(5):1016–23.

    PubMed  CAS  Google Scholar 

  74. Zheng CJ, Byers B, Moolgavkar SH. Allelic instability in mitosis: a unified model for dominant disorders. Proc Natl Acad Sci USA. 1993;90(21):10178–82.

    PubMed  CAS  Google Scholar 

  75. Fisch H, Hyun G, Golden R, et al. The influence of paternal age on down syndrome. J Urol. 2003;169(6):2275–8.

    PubMed  Google Scholar 

  76. Zaragoza MV, Jacobs PA, James RS, et al. Nondisjunction of human acrocentric chromosomes: studies of 432 trisomic fetuses and liveborns. Hum Genet. 1994;94(4):411–7.

    PubMed  CAS  Google Scholar 

  77. Sloter E, Nath J, Eskenazi B, et al. Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril. 2004;81(4):925–43.

    PubMed  Google Scholar 

  78. Fonseka KG, Griffin DK. Is there a paternal age effect for aneuploidy? Cytogenet Genome Res. 2011;133(2–4):280–91.

    PubMed  CAS  Google Scholar 

  79. De Souza E, Morris JK. Case–control analysis of paternal age and trisomic anomalies. Arch Dis Child. 2010;95(11):893–7.

    PubMed  Google Scholar 

  80. Zhu JL, Madsen KM, Vestergaard M, et al. Paternal age and congenital malformations. Hum Reprod. 2005;20(11):3173–7.

    PubMed  Google Scholar 

  81. De Souza E, Alberman E, Morris JK. Down syndrome and paternal age, a new analysis of case–control data collected in the 1960s. Am J Med Genet A. 2009;149A(6):1205–8.

    PubMed  Google Scholar 

  82. Oksuzyan S, Crespi CM, Cockburn M, et al. Birth weight and other perinatal characteristics and childhood leukemia in California. Cancer Epidemiol. 2012;36(6):e359–65.

    PubMed  CAS  Google Scholar 

  83. Murray L, McCarron P, Bailie K, et al. Association of early life factors and acute lymphoblastic leukaemia in childhood: historical cohort study. Br J Cancer. 2002;86(3):356–61.

    PubMed  CAS  Google Scholar 

  84. Hemminki K, Kyyronen P, Vaittinen P. Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology. 1999;10(3):271–5.

    PubMed  CAS  Google Scholar 

  85. Yip BH, Pawitan Y, Czene K. Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol. 2006;35(6):1495–503.

    PubMed  Google Scholar 

  86. Choi JY, Lee KM, Park SK, et al. Association of paternal age at birth and the risk of breast cancer in offspring: a case control study. BMC Cancer. 2005;5:143.

    PubMed  Google Scholar 

  87. Zhang Y, Kreger BE, Dorgan JF, et al. Parental age at child’s birth and son’s risk of prostate cancer. The Framingham Study. Am J Epidemiol. 1999;150(11):1208–12.

    PubMed  CAS  Google Scholar 

  88. Hare EH, Moran PA. Raised parental age in psychiatric patients: evidence for the constitutional hypothesis. Br J Psychiatry. 1979;134:169–77.

    PubMed  CAS  Google Scholar 

  89. Miller B, Messias E, Miettunen J, et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr Bull. 2011;37(5):1039–47.

    PubMed  Google Scholar 

  90. Matheson SL, Shepherd AM, Laurens KR, et al. A systematic meta-review grading the evidence for non-genetic risk factors and putative antecedents of schizophrenia. Schizophr Res. 2011;133(1–3):133–42.

    PubMed  Google Scholar 

  91. Wohl M, Gorwood P. Paternal ages below or above 35 years old are associated with a different risk of schizophrenia in the offspring. Eur Psychiatry. 2007;22(1):22–6.

    PubMed  CAS  Google Scholar 

  92. Gardener H, Spiegelman D, Buka SL. Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry. 2009;195(1):7–14.

    PubMed  Google Scholar 

  93. Hultman CM, Sandin S, Levine SZ, et al. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011;16(12):1203–12.

    PubMed  CAS  Google Scholar 

  94. Frans EM, Sandin S, Reichenberg A, et al. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry. 2008;65(9):1034–40.

    PubMed  Google Scholar 

  95. Menezes PR, Lewis G, Rasmussen F, et al. Paternal and maternal ages at conception and risk of bipolar affective disorder in their offspring. Psychol Med. 2010;40(3):477–85.

    PubMed  CAS  Google Scholar 

  96. Kuja-Halkola R, Pawitan Y, D’Onofrio BM, et al. Advancing paternal age and offspring violent offending: a sibling-comparison study. Dev Psychopathol. 2012;24(3):739–53.

    PubMed  Google Scholar 

  97. Saha S, Barnett AG, Buka SL, et al. Maternal age and paternal age are associated with distinct childhood behavioural outcomes in a general population birth cohort. Schizophr Res. 2009;115(2–3):130–5.

    PubMed  Google Scholar 

  98. Malaspina D, Reichenberg A, Weiser M, et al. Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatr Genet. 2005;15(2):117–25.

    PubMed  Google Scholar 

  99. Saha S, Barnett AG, Foldi C, et al. Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med. 2009;6(3):e40.

    PubMed  Google Scholar 

  100. Svensson AC, Abel K, Dalman C, et al. Implications of advancing paternal age: does it affect offspring school performance? PLoS One. 2011;6(9):e24771.

    PubMed  CAS  Google Scholar 

  101. Reichenberg A, Gross R, Weiser M, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63(9):1026–32.

    PubMed  Google Scholar 

  102. Hehir-Kwa JY, Rodriguez-Santiago B, Vissers LE, et al. De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J Med Genet. 2011;48(11):776–8.

    PubMed  CAS  Google Scholar 

  103. Perrin MC, Brown AS, Malaspina D. Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophr Bull. 2007;33(6):1270–3.

    PubMed  Google Scholar 

  104. Zribi N, Feki Chakroun N, El Euch H, et al. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;93(1):159–66.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell Ph.D., H.C.L.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, T.G., Aston, K.I., Carrell, D.T. (2013). The Aging Male and Impact on Offspring. In: Schlegel, P., Fauser, B., Carrell, D., Racowsky, C. (eds) Biennial Review of Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7187-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7187-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7186-8

  • Online ISBN: 978-1-4614-7187-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics