Skip to main content

ICSI Is a Revolutionary Treatment of Male Infertility That Should Be Employed Discriminately and Further Studied

  • Chapter
  • First Online:
Biennial Review of Infertility

Abstract

The development of intracytoplasmic sperm injection (ICSI) as treatment of male infertility has revolutionized infertility therapy and allowed many couples to give birth to a child that otherwise would have been impossible. However, studies have demonstrated distinct differences in the fertilization process between ICSI and standard fertilization. These differences include altered sperm chromatin decondensation, differences in the function of sperm-derived enzymes, altered gene expression of resulting embryos, and a decreased number of cells in the inner cell mass and trophectoderm. Recent studies highlight the potential effects of subtle differences in fertilization processes on the potential to alter downstream events, including epigenetic mechanisms, although it is not yet known if such differences are clinically relevant in increasing risk to offspring. Given that we are now beginning to better understand the potential effects of subtle epigenetic abnormalities and variations in affecting gene expression and health, and given the possibility that such differences may not be demonstrated in phenotypic differences until the offspring reaches a later stage of life, the long-term safety of ICSI has yet to be demonstrated. Medical and scientific prudence demand that until long-term follow-up studies of ICSI offspring are completed, caution should be taken in utilizing ICSI. Furthermore, current data demonstrate that universal use of ICSI does not result in an improved pregnancy rate or decreased risk of fertilization failure. Therefore, discriminate use of ICSI should be standard medical practice and ICSI should only be implemented when justified by documented medical necessity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiramoto Y. Microinjection of the live spermatozoa into sea urchin eggs. Exp Cell Res. 1962;27:416–26.

    Article  PubMed  CAS  Google Scholar 

  2. Iritani A, Utsumi K, Miyake M, et al. In vitro fertilization by a routine method and by micromanipulation. Ann N Y Acad Sci. 1988;541:583–90.

    Article  PubMed  CAS  Google Scholar 

  3. Keefer CL. Fertilization by sperm injection in the rabbit. Gamete Res. 1989;22(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  4. Lanzendorf S, Maloney M, Ackerman S, et al. Fertilizing potential of acrosome-defective sperm following microsurgical injection into eggs. Gamete Res. 1988;19(4):329–37.

    Article  PubMed  CAS  Google Scholar 

  5. Lanzendorf SE, Maloney MK, Veeck LL, et al. A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertil Steril. 1988;49(5):835–42.

    PubMed  CAS  Google Scholar 

  6. Fishel S, Timson J, Lisi F, et al. Micro-assisted fertilization in patients who have failed subzonal insemination. Hum Reprod. 1994;9(3):501–5.

    PubMed  CAS  Google Scholar 

  7. Cohen J, Talansky B, Alikani M. Laboratory techniques for handling gametes and embryos. Br Med Bull. 1990;46(3):643–53.

    PubMed  CAS  Google Scholar 

  8. Palermo G, Joris H, Devroey P, et al. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  PubMed  CAS  Google Scholar 

  9. Palermo GD, Neri QV, Monahan D, et al. Development and current applications of assisted fertilization. Fertil Steril. 2012;97(2):248–59.

    Article  PubMed  Google Scholar 

  10. Palermo GD, Cohen J, Rosenwaks Z. Intracytoplasmic sperm injection: a powerful tool to overcome fertilization failure. Fertil Steril. 1996;65(5):899–908.

    PubMed  CAS  Google Scholar 

  11. ESHRE. The word’s number of IVF and ICSI babies has now reached a calculated total of 5 million. 2012 [2/4/2013]; Available from: http://www.eshre.eu/ESHRE/English/Press-Room/Press-Releases/Press-releases-2012/5-million-babies/page.aspx/1606.

  12. CDC, ASRM, SART. 2008 Assisted reproductive technology success rates: National Summary and Fertility Clinic Reports. Atlanta: US Department of Health and Human Services 2010

    Google Scholar 

  13. Hansen M, Kurinczuk JJ, Bower C, et al. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30.

    Article  PubMed  Google Scholar 

  14. Hansen M, Bower C, Milne E, et al. Assisted reproductive technologies and the risk of birth defects–a systematic review. Hum Reprod. 2005;20(2): 328–38.

    Article  PubMed  Google Scholar 

  15. Farhi J, Fisch B. Risk of major congenital malformations associated with infertility and its treatment by extent of iatrogenic intervention. Pediatr Endocrinol Rev. 2007;4(4):352–7.

    PubMed  Google Scholar 

  16. Tararbit K, Lelong N, Thieulin AC, et al. The risk for four specific congenital heart defects associated with assisted reproductive techniques: a population-based evaluation. Hum Reprod. 2013;28(2):367–74.

    Article  PubMed  CAS  Google Scholar 

  17. Wen J, Jiang J, Ding C, et al. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012;97(6):1331–7. e1–4.

    Article  PubMed  Google Scholar 

  18. Stahl PJ, Schlegel PN. Genetic evaluation of the azoospermic or severely oligozoospermic male. Curr Opin Obstet Gynecol. 2012;24(4):221–8.

    Article  PubMed  Google Scholar 

  19. Carrell DT. The clinical implementation of sperm chromosome aneuploidy testing: pitfalls and promises. J Androl. 2008;29(2):124–33.

    Article  PubMed  Google Scholar 

  20. Tamburrino L, Marchiani S, Montoya M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  21. Barratt CL, De Jonge CJ. Clinical relevance of sperm DNA assessment: an update. Fertil Steril. 2010;94(6):1958–9.

    Article  PubMed  Google Scholar 

  22. Aston KI, Carrell DT. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl. 2009;30(6):711–25.

    Article  PubMed  CAS  Google Scholar 

  23. Aston KI, Punj V, Liu L, et al. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril. 2012;97(2):285–92.

    Article  PubMed  CAS  Google Scholar 

  24. Aston KI, Carrell DT. Emerging evidence for the role of genomic instability in male factor infertility. Syst Biol Reprod Med. 2012;58(2):71–80.

    Article  PubMed  CAS  Google Scholar 

  25. Davies MJ, Moore VM, Willson KJ, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.

    Article  PubMed  CAS  Google Scholar 

  26. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99:632–41.

    Article  PubMed  CAS  Google Scholar 

  27. Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction. 2012;143(6):727–34.

    Article  PubMed  CAS  Google Scholar 

  28. Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics. 2011;3(3):267–77.

    Article  PubMed  Google Scholar 

  29. Hewitson LC, Simerly CR, Tengowski MW, et al. Microtubule and chromatin configurations during rhesus intracytoplasmic sperm injection: successes and failures. Biol Reprod. 1996;55(2):271–80.

    Article  PubMed  CAS  Google Scholar 

  30. Sutovsky P, Hewitson L, Simerly CR, et al. Intracytoplasmic sperm injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly. Hum Reprod. 1996;11(8):1703–12.

    Article  PubMed  CAS  Google Scholar 

  31. Hewitson L, Simerly CR, Schatten G. Fate of sperm components during assisted reproduction: implications for infertility. Hum Fertil (Camb). 2002;5(3): 110–6.

    Article  Google Scholar 

  32. Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2006;75(3):442–51.

    Article  PubMed  CAS  Google Scholar 

  33. Finch KA, Fonseka KG, Abogrein A, et al. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod. 2008;23(6):1263–70.

    Article  PubMed  CAS  Google Scholar 

  34. Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    PubMed  CAS  Google Scholar 

  35. Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet. 2012;3:143.

    Article  PubMed  Google Scholar 

  36. Giritharan G, Li MW, De Sebastiano F, et al. Effect of ICSI on gene expression and development of mouse preimplantation embryos. Hum Reprod. 2010;25(12): 3012–24.

    Article  PubMed  CAS  Google Scholar 

  37. Bridges PJ, Jeoung M, Kim H, et al. Methodology matters: IVF versus ICSI and embryonic gene expression. Reprod Biomed Online. 2011;23(2):234–44.

    Article  PubMed  Google Scholar 

  38. Kohda T, Ogonuki N, Inoue K, et al. Intracytoplasmic sperm injection induces transcriptome perturbation without any transgenerational effect. Biochem Biophys Res Commun. 2011;410(2):282–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hill MJ, Richter KS, Heitmann RJ, et al. Trophectoderm grade predicts outcomes of singleblastocyst transfers. Fertil Steril. 2013 Jan 8. doi:pii: S0015-0282(12)02494-6. 10.1016/j.fertnstert.2012.12.003. [Epub ahead of print] PMID: 23312233 [PubMed - as supplied by publisher]

    Google Scholar 

  40. HFEA. Long term trends in fertility treatment: patients treated. London: Human Fertilisation and Embryology Authority; 2011 [cited 2012 2/4/2013]; Available from: http://www.hfea.gov.uk/2585.html.

  41. Nangia AK, Luke B, Smith JF, et al. National study of factors influencing assisted reproductive technology outcomes with male factor infertility. Fertil Steril. 2011;96(3):609–14.

    Article  PubMed  Google Scholar 

  42. Luna M, Bigelow C, Duke M, et al. Should ICSI be recommended routinely in patients with four or fewer oocytes retrieved? J Assist Reprod Genet. 2011; 28(10):911–5.

    Article  PubMed  Google Scholar 

  43. Xi QS, Zhu LX, Hu J, et al. Should few retrieved oocytes be as an indication for intracytoplasmic sperm injection? J Zhejiang Univ Sci B. 2012;13(9):717–22.

    Article  PubMed  Google Scholar 

  44. Lunenfeld B, Van Steirteghem A. Infertility in the third millennium: implications for the individual, family and society: condensed meeting report from the Bertarelli Foundation’s second global conference. Hum Reprod Update. 2004;10(4):317–26.

    Article  PubMed  CAS  Google Scholar 

  45. Lamb DJ. Semen analysis in 21st century medicine: the need for sperm function testing. Asian J Androl. 2010;12(1):64–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell Ph.D, H.C.L.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carrell, D.T. (2013). ICSI Is a Revolutionary Treatment of Male Infertility That Should Be Employed Discriminately and Further Studied. In: Schlegel, P., Fauser, B., Carrell, D., Racowsky, C. (eds) Biennial Review of Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7187-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7187-5_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7186-8

  • Online ISBN: 978-1-4614-7187-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics