Advertisement

Structures and Waves in a Nonlinear Heat-Conducting Medium

  • Stefka DimovaEmail author
  • Milena Dimova
  • Daniela Vasileva
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 45)

Abstract

This paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat-conducting medium, described by a reaction–diffusion equation. Being posed and actively worked out by the Russian school of A.A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.

Keywords

Nonlinear heat-conducting medium Self-organization Reaction-diffusion equation Self-similar solutions Blow-up Finite element method 

Notes

Acknowledgements

The first author is partially supported by the Sofia University research grant No 181/2012; the second and the third authors are partially supported by the Bulgarian National Science Foundation under Grant DDVU02/71.

References

  1. 1.
    Adyutov, M.M., Klokov, Yu.A., Mikhailov, A.P.: Self-similar heat structures with reduced half width. Differ. Equ. 19(7), 805–815 (1983)MathSciNetGoogle Scholar
  2. 2.
    Akhromeeva, T.S., Kurdyumov, S.P., Malinetzkii, G.G., Samarskii, A.A.: Nonstationary Structures and Diffusion-Induced Chaos. Nauka, Moscow (1992) (in Russian)Google Scholar
  3. 3.
    Bakirova, M.I., Borshukova, S.N., Dorodnicyn, V.A., Svirshchevskii, S.: Directed heat diffusion in a nonlinear anisotropic medium. Preprint IPM AN SSSR, vol. 182 (1985) (in Russian)Google Scholar
  4. 4.
    Bakirova, M.I., Dimova, S.N., Dorodnicyn, V.A., Kurdyumov, S.P., Samarskii, A.A., Svirshchevskii, S.: Invariant solutions of heat-transfer equation, describing directed heat diffusion and spiral waves in nonlinear medium. Sov. Phys. Dokl. 33(3), 187–189 (1988)zbMATHGoogle Scholar
  5. 5.
    Barenblatt, I.G.: Scaling, Self-similarity and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  6. 6.
    Bebernes, J., Eberly, D.: Mathematical problems from combustion theory. In: Applied Mathematical Sciences, vol. 83. Springer, New York (1989)Google Scholar
  7. 7.
    Berger, M., Kohn, R.: A rescaling algorithm for the numerical calculation of blowing up solutions. Commun. Pure Appl. Math. 41, 841–863 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Borshukova, S.N., Yotova, A.I., Lazarov, R.D.: PAP TERMO for solving parabolic problems by the FEM. In: Numerical Methods for Solving Problems of Mathematical Physics. Computer Center of the Siberian Branch of USSR Academy of Sciences, pp. 31–41 (1985) (in Russian)Google Scholar
  9. 9.
    Budd, C.J., Piggott, M.D.: Geometric integration and its applications, In: Handbook of Numerical Analysis, Elsevier, vol. 18, pp. 111–241 (2003)Google Scholar
  10. 10.
    Budd, C.J., Huang, W., Russell, R.D.: Addaptivity with moving grids. Acta Numerica, Elsevier, vol. 18, 111–241 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ibragimov, N.H. (Ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1, Symmetries, Exact Solutions and Conservation Laws. CRC Press Inc., Boca Raton (1993)Google Scholar
  12. 12.
    Dimova S.: Numerical Investigation of Nonstationary Heat Structures. Dissertation for Doctor of Sciences, Dubna, Russia (2004) (in Russian)Google Scholar
  13. 13.
    Dimova, S.N., Chernogorova, T.P.: Asymptotically self-similar blow-up for a quasilinear parabolic equation byond some critical exponents. C.R. Acad. Bulg. Sci. 53(12), 21–24 (2000)Google Scholar
  14. 14.
    Dimova, S.N., Chernogorova, T.P.: Nonsymmetric Galerkin finite element method with dynamic mesh refinement for singular nonlinear problems. J. Comp. Appl. Math. (Kiev University) 92, 3–16 (2005)Google Scholar
  15. 15.
    Dimova, M., Dimova, S.: Numerical investigation of spiral structure solutions of a nonlinaer elliptic problem. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. Lecture Notes in Computer Science, Springer, vol. 6046, pp. 395–403 (2011)Google Scholar
  16. 16.
    Dimova, S.N., Kaschiev, M.S.: Numerical analysis of two-dimensional eigen functions of burning of a nonlinear anysotropic medium. Commun. JINR, Dubna 11-88-876(9), (1988) (in Russian)Google Scholar
  17. 17.
    Dimova, S.N., Vasileva, D.P.: Numerical realization of blow-up spiral wave solutions of a nonlinear heat-transfer equation. Int. J. Numer. Methods Heat Fluid Flow 4(6), 497–511 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dimova, S.N., Vasileva, D.P.: Lumped-mass finite element method with interpolation of the nonlinear coefficients for a quasilinear heat transfer equation. Numer. Heat Transf. B 28, 199–215 (1995)CrossRefGoogle Scholar
  19. 19.
    Dimova, S.N., Kaschiev, M.S., Kurdyumov, S.P.: Numerical analysis of the eigenfunctions of combustion of a nonlinear medium in the radial-symmetric case. USSR Comp. Math. Math. Phys. 29(6), 61–73 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dimova, M., Dimova, S., Vasileva, D.: Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium. Cent. Eur. J. Math.Google Scholar
  21. 21.
    Dimova, S.N., Kaschiev, M.S., Koleva, M.G., Vasileva, D.P.: Numerical analysis of radially nonsymmetric structures in a nonlinear heat-conducting medium. Sov. Phys. Dokl. 39(10), 673–676 (1994)MathSciNetGoogle Scholar
  22. 22.
    Dimova, S.N., Kaschiev, M.S., Koleva, M.G., Vasileva, D.P.: Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium. Comput. Math. Math. Phys. 35(3), 303–319 (1995)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Dimova, S.N., Kaschiev, M.S., Koleva, M.G., Vasileva, D.P.: Numerical analysis of radially nonsymmetric blow-up solutions of a nonlinear parabolic problem. J. Comp. Appl. Math. 97, 81–97 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dorodnitsyn, V.A.: Application of Lie groups to difference equations. CRC Press, Chapman & Hall (2010)CrossRefGoogle Scholar
  25. 25.
    Dorodnitsyn, V.A., Knyazeva, I.V., Svirshchevskii, S.R.: Group properties of the nonlinear heat equation with a source in 2D and 3D case. Differ. Equ. 19(7), 901–908 (1983)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Elenin, G.G., Kurdyumov, S.P., Samarskii, A.A.: Nonstationary dissipative structures in a nonlinear heat conducting medium, Zh. Vychisl. Mat. Mat. Fiz. 23, 380–390 (1983) (in Russian)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Eriksson, K., Thomee, V.: Galerkin methods for singular boundary value problems in one space dimension. Math. Comp. 42(166), 345–367 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Fujita, H.: On the blowup of solutions of the Cauchy problem for \(u_{t} = \bigtriangleup u + {u}^{1+\alpha }.\) J. Fac. Sci. Univ. Tokyo Sect. A Math. 16, 105–113 (1966)Google Scholar
  29. 29.
    Galaktionov, V.A.: Two methods for comparing solutions of parabolic equations. Sov. Phys. Dokl. 25, 250–251 (1980)zbMATHGoogle Scholar
  30. 30.
    Galaktionov, V.A., Dorodnicyn, V.A., Elenin, G.G., Kurdyumov, S.P., Samarskii, A.A.: A quasilinear equation of heat conduction with a source: peaking, localization, symmetry, exact solutions, asymptotic behavior, structures. J. Math. Sci. 4(5), 1222–1292 (1988)CrossRefGoogle Scholar
  31. 31.
    Galaktionov, V.A., Vazquez, J.L.: Continuation of blow-up solutions of nonlinear heat equation in several space dimentions. Commun. Pure Appl. Math. 50(1), 1–67 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Galaktionov, V.A., Vazquez, J.L.: The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 8(2), 399–433 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Galaktionov, V.A., Kurdyumov S.P., Samarskii, A.A.: On appriximate self-similar solutions of a class of quasilinear heat equations with a source. Math. USSR Sb. 52, 155–180 (1985)zbMATHCrossRefGoogle Scholar
  34. 34.
    Galaktionov, V.A., Kurdyumov S.P., Samarskii, A.A.: On the method of stationary states for quasilinear parabolic equations. Math. USSR Sb. 67, 449–471 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Gavurin, M.K.: Nonlinear equations and continuous analogues of iteration methods. Izvestia Vuzov Math. 5, 18–31 (1958) (in Russian)MathSciNetGoogle Scholar
  36. 36.
    Gurevich, M.I., Tel’kovskaya, O.V.: Existence of self-similar solutions of a nonlinear heat-transfer equation with zero region in the vicinity of the origin. Preprint IAE, Moscow, 5565/1 (1992) (in Russian)Google Scholar
  37. 37.
    Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-Preserving Algorithms for ODE. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    Ivanova, D.I., Dimova, S.N., Kaschiev, M.S.: Numerical analysis of the onedimensional eigen functions of combustion of a nonlinear medium. Commun. JINR, Dubna 11-90-11 (1990) (in Russian)Google Scholar
  39. 39.
    Kalashnikov, A.S.: Some problems of the qualitative theory of non-linear degenerate second order parabolic equations. Russ. Math. Surv. 42, 135–176 (1987) (in Russian)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Koleva M.G.: Numerical Analysis of the Eigen Functions of Combustion of a Nonlinear Heat-conducting Medium. Ph.D. Thesis, Sofia (2000) (in Bulgarian)Google Scholar
  41. 41.
    Koleva, M.G., Dimova, S.N., Kaschiev M.S.: Analisys of the eigen functions of combustion of a nonlinear medium in polar coordinates. Math. Model. 3, 76–83 (1992)Google Scholar
  42. 42.
    Kurdyumov, S.P.: Nonlinear processes in dense plasma. In: Proceedings of the II International Conference on Plasma Theory, Kiev 1974. Naukova Dumka, Kiev, pp. 278–287 (1976); Preprint IPM, Moscow, vol. 18 (1975) (in Russian)Google Scholar
  43. 43.
    Kurdyumov S.P., Kurkina E.S., Malinezkii G.G., Samarskii A.A.: Dissipative structures in a nonlinear nonhomogenious burning medium. Sov. Phys. Dokl. 251(3), 587–591 (1980) (in Russian)Google Scholar
  44. 44.
    Kurdyumov, S.P., Kurkina E.S., Potapov A.B., Samarskii A.A.: Complex multidimensional structures of burning of a nonlinear medium. USSR Comp. Math. Math. Phys. 26(8), 1189–1205 (1986) (in Russian)Google Scholar
  45. 45.
    Kurkina, E.S., Kurdyumov, S.P.: The spectrum of dissipative structures developing in a peaking regime. Dokl. Acad. Nauk 395(6), 743–748 (2004) (in Russian)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Levin, H.A.: The role of critical exponents in blowup theorems. SIAM Rev. 32, 262–288 (1990)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Novikov, V.A., Novikov, E.A.: Stability control for explicit one-step integration methods for ODE. Dokl. Akad. Nauk SSSR 272, 1058-1062 (1984) (in Russian)zbMATHGoogle Scholar
  48. 48.
    Puzynin, I.V., Boyadzhiev, T.L., Vinitskii, S.I., Zemlyanaya, E.V., Puzynina, T.P., Chuluunbaatar, O.: Methods of computational physics for investigation of models of complex physical systems. Phys. Particals Nucley 38, 70–116 (2007)CrossRefGoogle Scholar
  49. 49.
    Samarskii, A.A., Sobol’, I.M.: Examples of numerical computation of temperature waves. USSR Comp. Math. Math. Phys. 3, 945–970 (1963)Google Scholar
  50. 50.
    Samarskii, A.A., Zmitrenko, N.V., Kurdyumov, S.P., Mikhailov, A.P.: Thermal structures and fundamental length in a medium with nonlinear heat-conduction and volumetric heat source. Sov. Phys. Dokl. 21, 141–143 (1976)Google Scholar
  51. 51.
    Samarskii, A.A., Elenin, G.G., Kurdyumov, S.P., Mikhailov, A.P.: The burning of nonlinear medium in the form of a complex structure. Sov. Phys. Dokl. 22, 737–739 (1977)Google Scholar
  52. 52.
    Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blowup in Problems for Quasilinear Parabolic Equations. Nauka, Moscow (1987) (in Russian); Valter de Gruyter & Co., Berlin (1995)Google Scholar
  53. 53.
    Vasileva D.P.: Numerical Analysis of Highly Nonstationary Processes in Nonlinear Heat-conducting Medium. Ph.D. Thesis, Sofia (1997) (in Bulgarian)Google Scholar
  54. 54.
    Wilhelmsson, H., Lazaro, E.: Reaction-Diffusion Problems in the Physics of Hot Plasmas. IOP Publishing, Bristol (2001)CrossRefGoogle Scholar
  55. 55.
    Yi-Yong-Nie, Tomee, V.: A lumped mass FEM with quadrature for a nonlinear parabolic problem. IMA J. Numer. Anal. 5, 371–396 (1985)Google Scholar
  56. 56.
    Zhidkov, E.P., Makarenko, G.I., Puzynin, I.V.: Continuous analog of Newton method for nonlinear problems of physics. Particals Nucley 4(1), 127–166 (1973)(in Russian)Google Scholar
  57. 57.
    Zmitrenko, N., Kurdyumov, S.P., Mickhailov, A.P., Samarskii, A.A.: Localization of termo-nuclear combustion in plasma with electron heat-conductivity. Lett. JETF 26(9), 620–624 (1977) (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stefka Dimova
    • 1
    Email author
  • Milena Dimova
    • 2
  • Daniela Vasileva
    • 2
  1. 1.Faculty of Mathematics and InformaticsUniversity of SofiaSofiaBulgaria
  2. 2.Institute of Mathematics and InformaticsBulgarian Acad. Sci.SofiaBulgaria

Personalised recommendations